New Energy: Science and Technology Articles
Rus На русском Eng In English


Synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF

The SEM image captured by Babak Anasori shows MXene particlesMXenes have potential uses in a broad range of energy and electronics applications, including lithium-ion batteries and supercapacitors. The materials' layered structure resembles that of graphene — hence the suffix ene — a two-dimensional sheet of carbon, but its chemistry is more complex and more versatile.

Researches report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Has been present evidence for the exfoliation of the following MAX phases.

 

Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors

Schematic of the operation of an EFC system. Slurries are charged in the flow cellNovel electrical energy storage concept, the electrochemical flow capacitor (EFC), holds much promise for grid-scale energy storage applications.

The EFC combines the principles behind the  operation of flow batteries and supercapacitors, and enables rapid charging/discharging and decoupled energy/power ratings. Electrical charge is stored in a flowable carbon slurry composed of low-cost and abundantly available carbon particles in pH-neutral, aqueous electrolyte.

 

MXene - New Family of 2-D Metal Carbides and Nitrides

Ti3AlC2 forming two OH-terminated MXene layersAn urgent challengecurrently faced by researchers and the public alike is the ability to identify the next generation of sustainable, cost-effective, and energy efficient materials for our everyday use. While searching for new materials for electrical energy storage, a team of Drexel University materials scientists has discovered a new family of two-dimensional compounds proposed to have unique properties that may lead to groundbreaking advances in energy storage technology.

In their paper, the research team recounts their ability to transform three dimensional titanium-aluminum carbide, a typical representative of a family of layered ternary carbides called MAX phases, into a two dimensional structure with greatly different properties. MAX phases, known as ductile and machineable ceramics, have been researched by Prof. Barsoum’s lab for more than a decade and dozens of layered carbides, nitrides and carbonitrides with a variety of properties have been synthesized. However, these ceramics have always been produced as 3-dimensional materials.

 

Pore Size Reduction Increases Energy Stored In Super Capacitors

Computational modeling of carbon supercapacitors
Yury Gogotsi of Drexel University with his co-workers felt the necessity of studying a potential supercapacitor material at the atomic level to analyze certain experimental results. A research team under the supervision of Oak Ridge National Laboratory’s (ORNL) computational physicist Vincent Meunier and computational chemists Jingsong Huang and Bobby Sumpter enabled the analysis at the atomic level.

When you're talking about nanomaterials, however, that eye is pretty much useless unless it's looking through an electron microscope or at a computer visualization. Yet the pits and ridges on a seemingly flat surface—so small they are invisible without such tools—can give the material astonishing abilities. The trick for researchers interested in taking advantage of these abilities lies in understanding and, eventually, predicting how the microscopic topography of a surface can translate into transformative technologies.

 

Supercapasitors: Big Energy Storage in Thin Films

Computational modeling of carbon supercapacitors

Energy storage devices called superapacitors can be recharged many more times than batteries, but the total amount of energy they can store is limited. This means that the devices are useful for providing intense bursts of power to supplement batteries but less so for applications that require steady power over a long period, such as running a laptop or an engine.

Now researchers at Drexel University in Philadelphia have demonstrated that it's possible to use techniques borrowed from the chip-making industry to make thin-film carbon ultracapacitors that store three times as much energy by volume as conventional ultracapacitor materials. While that is not as much as batteries, the thin-film ultracapacitors could operate without ever being replaced.

 

Materials for electrochemical capacitors

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials.

The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electroche.

 



News from MRC.ORG.UA

Paper on Electrochemically synthesized MXenes as sustainable solid lubricants: Mechanistic insights into tribofilm formation and interfacial dynamics

Electrochemically synthesized MXenes as sustainable solid lubricants. DOI:10.1016/j.carbon.2025.121136Highlights
• First application report on bubble-assisted sustainable EC-MXene
• EC-MXene keeps tribological performance with with mainly O-terminations
• EC-MXene forms a stable tribofilm, supported by experiments and DFT

 
Our team visited Innovative & Industrial 2D/Advanced Materials Summit & Expo I2DM 2025 at Khalifa University in Abu-Dhabi, November 2025

Innovative & Industrial 2D/Advanced Materials Summit & Expo (I2DM2025)We are excited to share that our Carbon-Ukraine (Y-Carbon LLC) company participated in the I2DM Summit and Expo 2025 at Khalifa University in Abu-Dhabi! Huge thanks to Research & Innovation Center for Graphene and 2D Materials (RIC2D) for hosting such a high-level event.It was an incredible opportunity to meet brilliant researchers and innovators working on the next generation of 2D materials. The insights and energy from the summit will definitely drive new ideas in our own development.

 
Carbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup

Visit to XPANCEOCarbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup company that is developing the first smart contact lenses with AR vision and health monitoring features, working on truly cutting-edge developments.

 
Our Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University!

Kick off meeting at Khalifa University on  MX-Innovation project funded by RIC2D programOur Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University! Amazing lab tours to project collaborators from Khalifa University, great discussions, strong networking, and a wonderful platform for future collaboration.

 
MXene-based electrochemical glucose biosensors: Comparative enhancement with Aquivion and Nafion

Schematic representation of working electrode development and electrochemical measurement of glucose concentrationThis work provides valuable insights into the use of pristine Ti₃C₂Tₓ MXenes (rather than composites) as promising materials for next-generation glucose biosensors. The study underscores the importance of surface chemistry, film stability, and polymer optimization in achieving high-performance sensing platforms. 

 
Engineering Safer MXenes for Biomedical Applications: Effects of Etching and Delamination on Biocompatibility of Ti-Based MXenes

MXenes for biomedical useMXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.

 
2D MXenes in the Design of Heavy Metal Ion Sensors

2D MXenes in the design of heavy metal ion sensorsAn excellent review highlighting how MXene-based sensors can help tackle one of today’s pressing environmental challenges — heavy metal contamination. Excited to see such impactful work moving the field of environmental monitoring and sensor technology forward!

 
RIC2D MX-Innovation project on MXene production for water desalination and medical diagnostics takes off — Ukraine-based MXene manufacturing company Carbon-Ukraine (Y-Carbon LLC) on board!

MXene Carbon-Ukraine company in MX-Innovation project RIC2D with Dreexl University and Khakifa University

Carbon-Ukraine team is very exited to particpate in newly launched "MX-Innovation" three-year multinational collaboration project led by Prof. Yury Gogotsi, Drexel University (USA) to produce MXene nanomaterials. The project, which is a collaboration with Drexel University USA, Kalifa University in the UAE, the University of Padua in Italy and the Kyiv, Ukraine-based MXene manufacturing company Carbon-Ukraine, seeks to use MXene for water desalination and medical diagnostics. 

 
Carbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project organized by CREST at NATO HQ

Project meeting at NATO HQ, Brussel, BelgiumCarbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project (Advanced Digital Engineering Methods to Design MXene-based Nanocomposites for Electro-Magnetic Interference Shielding in Space), supported by NATO through the Science for Peace and Security Programme.

 
Joint patent application MRC, Carbon-Ukraine and Drexel University on highly porous MAX phase precursor for MXene synthesis published!

altExellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!

 
MXene Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future", IEEE NAP-2025 International Conference Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaOur team was very delighted to take part in International Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene event in Europe this year!  

 
Join us at the IEEE NAP-2025 International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future", Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaLast Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year!  Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!

 
New Publication Alert: "MXenes in Healthcare: Transformative Applications and Challenges in Medical Diagnostics and Therapeutics"

MXene in healthcareWe are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics.  Read the full article here: https://doi.org/10.1039/D4NR04853A.

 
Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis

Electrochemical etching of Ti 3 AlC 2 pellet electrodes in aqueous electrolytes: Set-up and workflow with schematic mechanisms to generatedelaminated EC-MXene flakesCongratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.

 
Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay

Potential Genotoxicity of MXenes Using a DNA Comet Assay. ACS Appl. Bio Mater. 2024, 7, 12, 8351-8366Congratulations to all collaborators with this interesting joint work!

 MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. Despite their proven biocompatibility and low cytotoxicity, their genotoxicity has not been addressed, so we investigated whether MXenes interfere with DNA integrity in cultured cells and examined the fragmentation of their chromosomal DNA by a DNA comet assay.