Materials Research Centre
![]() |
![]() |
Materials Research Centre is Ukrainian innovation R&D company founded in 1995 by researchers from several institutes of the Ukrainian Academy of Sciences. MRC carries out research in the fields of chemistry, nanomaterials and nanotechnology. MRC in partnering with Carbon-Ukraine company has been specializing in the research and development of 2D nanomaterials MXenes, MAX-phase ceramics, porous carbon nanomaterials CDCs and others. Besides nanotechnological direction MRC has strong engineeering department that provide technology development, engineering design and calculations, manufacturing of non standard experimental equipment, laboratory prototypes, enables technology scaling up to pilot lines. |
![]() |
![]() |
|||
![]() |
![]() |
![]() |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
|
Distinctive excellence of Materials Research Centre is not only its strong scientific potential but also presence of own engineering design group and metal-working manufacturing. This makes possible to provide complete cycle of product manufacturing from its conceiving and engineering design to production and service. MRC has been specializing in the research and development of 2D nanomaterials MXenes, MAX-phase ceramics, porous carbon nanomaterials CDCs and others. Additionally, the company has been engaged in the research into the properties and applications of nano powders of transition metal oxides for solar panels and self-cleaning surfaces. At present the company manufactures electrolytic solar cells from its own materials on the laboratory scale, their voltage and current characteristics being continuously improved. Most of the equipment, employed in the production, namely the furnaces for high temperature treatment of non-organic materials, was designed and manufactured by the company specialists. MRC team comprises highly-qualified experts in different fields of science (chemistry, physics, and material study) and competent designers which allows to achieve significant results both in research and development of alternative energy resources at the world level. One of the major goals of MRC is to promote integration of Ukrainian science in the European and world-wide scientific networks, as well as stabilization of MRC team’s potential, safeguarding highly qualified specialists and maintaining research and technological capacities. MRC participated in several NATO Advanced Study Institutes and Advanced Research Workshops and numerous international conferences, US DoE projects, EC Horizon 2020, Horizon Europe r&d projects and others. One of the specialization areas of the company are: development, design, manufacturing and assembly of non-standard metal arrangements, power equipment, automation systems and multi-purpose power furnaces. MRC has its own manufacturing premises, which is equipped with all the necessary power carriers and comprises: - High temperature furnaces fro specific purposes temperature range 1100 -2000 C. 03142, St. Ak. Omelyana Pritsaka, 3 Kyiv, Ukraine |
|||||||
























Highlights
We are excited to share that our Carbon-Ukraine (Y-Carbon LLC) company participated in the I2DM Summit and Expo 2025 at Khalifa University in Abu-Dhabi! Huge thanks to Research & Innovation Center for Graphene and 2D Materials (RIC2D) for hosting such a high-level event.It was an incredible opportunity to meet brilliant researchers and innovators working on the next generation of 2D materials. The insights and energy from the summit will definitely drive new ideas in our own development.
Carbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup company that is developing the first smart contact lenses with AR vision and health monitoring features, working on truly cutting-edge developments.
Our Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University! Amazing lab tours to project collaborators from Khalifa University, great discussions, strong networking, and a wonderful platform for future collaboration.
MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.
An excellent review highlighting how MXene-based sensors can help tackle one of today’s pressing environmental challenges — heavy metal contamination. Excited to see such impactful work moving the field of environmental monitoring and sensor technology forward!
Carbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project (Advanced Digital Engineering Methods to Design MXene-based Nanocomposites for Electro-Magnetic Interference Shielding in Space), supported by NATO through the Science for Peace and Security Programme.
Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Our team was very delighted to take part in International Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene event in Europe this year!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year! Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics. Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.
Congratulations to all collaborators with this interesting joint work!