Our new collaborative research paper with research group from Drexel University on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene:
MXenes, a large family of 2D carbides and/or nitrides, are amongthe most studied materials worldwide due to their great diversity of structuresand compositions. Their unique properties find use in several applications. Typically, they are manufactured by selective wet-chemical etching of layered MAXphase ceramics, which are produced nowadays primarily for MXene synthe-sis. However, the synthesis of MAX phases has not been changed since the time of their use in structural and high-temperature applications, and it has not been optimized for MXene manufacturing. In this study, we have optimized the synthesis of MAX phases for MXene manufacturing.

The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive titanium sponge instead of a highly pure titanium powderand explain the mechanisms of reaction sintering and formation of porous MAXphase. MXene obtained from this MAX phase, Ti3C2Tx, shows larger flake sizeand higher electrical conductivity in thin films, compared to the materials pro-duced from the costly fine titanium powder. The proposed approach may applyto the synthesis of other MAX phases as well.
KEYWORDS: MAX phases, MXenes, porous ceramics, reaction sintering, synthesis
Read More: Roslyk I, Baginskiy I, Zahorodna V, Gogotsi O, Ippolito S, Gogotsi Y. Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene. Int J Appl Ceram Technol. 2024; 1–8. https://doi.org/10.1111/ijac.14671
Other recent papers:
| Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration |
|
|
| MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating |
|
|

Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function.
The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed.
MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.
Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year! Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics. Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.
Congratulations to all collaborators with this interesting joint work!
Thank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties
Dr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.
MRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field. 
Together with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.