New Publication Alert: "MXenes in Healthcare: Transformative Applications and Challenges in Medical Diagnostics and Therapeutics"

MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics

Keshav Narayan Alagarsamy a, Leena Regi Saleth a, Kateryna Diedkova bc, Veronika Zahorodna d, Oleksiy Gogotsi cd, Maksym Pogorielov bc and Sanjiv Dhingra *a

a Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada. 
b Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia LV-1004
c Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine 40007
d Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine

Abstract

MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation.

Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.

Schematic representation of the multifaceted applications of MXenes in biomedical fields. MXenes enhance the sensitivity and speed of wearable sensors, making them ideal for real-time health monitoring. In cancer therapy, MXenes function as effective contrast agents in MRI and CT scans, facilitating accurate diagnosis and treatment. MXenes play a vital role in tissue engineering by promoting both hard tissue regeneration and soft tissue repair. Additionally, MXenes contribute to innovative solutions for combating infectious diseases by enabling antimicrobial surfaces and supporting immune modulation, thereby showcasing their potential for a wide range of therapeutic applications. Source: Nanoscale, 2025, Advance Article

MXenes have surfaced as highly advantageous materials for biomedical applications, especially in the realms of drug delivery, biosensing, tissue engineering, and oncological treatment. The distinctive physicochemical characteristics exhibited by MXenes, including elevated electrical conductivity, extensive surface area, and adjustable surface chemistry, render them exceedingly adaptable. Nevertheless, notwithstanding their promising capabilities, MXenes encounter numerous obstacles that necessitate resolution for their effective clinical application. These obstacles encompass inadequate physiological stability, apprehensions regarding cytotoxicity, challenges related to scalability, susceptibility to oxidative degradation, and implications for environmental sustainability. One of the primary limitations of MXenes in biomedical applications is their poor stability in physiological environments. Their high decomposition rate can reduce their effectiveness in drug delivery and limit their long-term performance in biological systems. A promising approach for enhancing stability is the formation of MXene-based composites with other two-dimensional materials, such as graphene or transition metal dichalcogenides. These hybrid materials have demonstrated improved drug release profiles and prolonged delivery in preclinical studies. Additionally, surface functionalization with functional groups such as hydroxyl (–OH) and oxygen-containing moieties can improve MXene stability and facilitate better drug loading and controlled release.
Another critical challenge is the scalability of MXene synthesis. Current methods, such as chemical exfoliation, involve complex and expensive procedures that limit large-scale production. The development of cost-effective synthesis approaches, such as fluoride-free hydrothermal synthesis, can enhance the commercial viability of MXenes. Furthermore, advancements in automated and high-yield production techniques will be necessary to make MXenes more accessible for biomedical applications. Addressing scalability issues will be a key factor in accelerating their transition from laboratory research to clinical applications.

While MXenes are generally considered biocompatible, their cytotoxicity and long-term biosafety remain concerns. Some studies have reported potential toxicity at higher concentrations or in specific biological environments. To ensure their safe use in clinical applications, rigorous in vitro and in vivo toxicity studies are essential. Standardized testing protocols must be developed to facilitate consistent evaluation across different studies and research groups. Additionally, surface modifications using biocompatible coatings with MXenes, such as polyethylene glycol or silicon dioxide, can help mitigate toxicity concerns, enhance biosafety and reduce their oxidation.

Pharmacokinetics also poses a significant challenge for MXene-based drug delivery systems. Poor targeting efficiency and limited circulation time in the body can reduce their therapeutic effectiveness. To address this, future research should focus on developing targeted drug delivery systems by functionalizing MXenes with targeting ligands, such as antibodies, peptides, or aptamers. Additionally, optimizing MXene size, surface charge, and hydrophilicity can improve their biodistribution and circulation time, making them more effective in drug delivery and cancer therapy.

The environmental impact of MXene synthesis and disposal is another area of concern. Traditional synthesis methods rely on strong acids and high temperatures, which generate harmful byproducts. Additionally, the potential release of MXene nanoparticles into the environment poses risks that have not yet been fully explored. Future research should focus on developing green synthesis methods that minimize toxic waste and reduce environmental hazards. Additionally, studies on MXene biodegradability and long-term environmental fate are necessary to ensure their safe use and disposal.

Regulatory challenges also present a major hurdle for the clinical translation of MXene-based technologies. Currently, standardized safety and efficacy guidelines for MXenes in biomedical applications are lacking. Establishing regulatory frameworks and toxicity testing protocols will be crucial for obtaining clinical approval. Collaboration between researchers, clinicians, and regulatory agencies will play a pivotal role in addressing these challenges and accelerating the integration of MXenes into clinical practice.

In order to overcome these challenges and fully realize the potential of MXenes in advanced medical technologies, scientists, engineers and clinicians must work together as an interdisciplinary team. With continued research and development, MXenes could enact a transformative role in medicine, specifically in tissue engineering, sensor development, and theranostics, contributing to the future of personalized and regenerative medicine.

Read more detailed review: Keshav Narayan Alagarsamy, Leena Regi Saleth, Kateryna Diedkova, Veronika Zahorodna, Oleksiy Gogotsi, Maksym Pogorielov and Sanjiv Dhingra. MXenes in Healthcare: Transformative Applications and Challenges in Medical Diagnostics and Therapeutics. Nanoscale, 2025, Advance Article. DOI: 10.1039/D4NR04853A

 

News from MRC.ORG.UA

Paper on Electrochemically synthesized MXenes as sustainable solid lubricants: Mechanistic insights into tribofilm formation and interfacial dynamics

Electrochemically synthesized MXenes as sustainable solid lubricants. DOI:10.1016/j.carbon.2025.121136Highlights
• First application report on bubble-assisted sustainable EC-MXene
• EC-MXene keeps tribological performance with with mainly O-terminations
• EC-MXene forms a stable tribofilm, supported by experiments and DFT

 
Our team visited Innovative & Industrial 2D/Advanced Materials Summit & Expo I2DM 2025 at Khalifa University in Abu-Dhabi, November 2025

Innovative & Industrial 2D/Advanced Materials Summit & Expo (I2DM2025)We are excited to share that our Carbon-Ukraine (Y-Carbon LLC) company participated in the I2DM Summit and Expo 2025 at Khalifa University in Abu-Dhabi! Huge thanks to Research & Innovation Center for Graphene and 2D Materials (RIC2D) for hosting such a high-level event.It was an incredible opportunity to meet brilliant researchers and innovators working on the next generation of 2D materials. The insights and energy from the summit will definitely drive new ideas in our own development.

 
Carbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup

Visit to XPANCEOCarbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup company that is developing the first smart contact lenses with AR vision and health monitoring features, working on truly cutting-edge developments.

 
Our Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University!

Kick off meeting at Khalifa University on  MX-Innovation project funded by RIC2D programOur Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University! Amazing lab tours to project collaborators from Khalifa University, great discussions, strong networking, and a wonderful platform for future collaboration.

 
MXene-based electrochemical glucose biosensors: Comparative enhancement with Aquivion and Nafion

Schematic representation of working electrode development and electrochemical measurement of glucose concentrationThis work provides valuable insights into the use of pristine Ti₃C₂Tₓ MXenes (rather than composites) as promising materials for next-generation glucose biosensors. The study underscores the importance of surface chemistry, film stability, and polymer optimization in achieving high-performance sensing platforms. 

 
Engineering Safer MXenes for Biomedical Applications: Effects of Etching and Delamination on Biocompatibility of Ti-Based MXenes

MXenes for biomedical useMXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.

 
2D MXenes in the Design of Heavy Metal Ion Sensors

2D MXenes in the design of heavy metal ion sensorsAn excellent review highlighting how MXene-based sensors can help tackle one of today’s pressing environmental challenges — heavy metal contamination. Excited to see such impactful work moving the field of environmental monitoring and sensor technology forward!

 
RIC2D MX-Innovation project on MXene production for water desalination and medical diagnostics takes off — Ukraine-based MXene manufacturing company Carbon-Ukraine (Y-Carbon LLC) on board!

MXene Carbon-Ukraine company in MX-Innovation project RIC2D with Dreexl University and Khakifa University

Carbon-Ukraine team is very exited to particpate in newly launched "MX-Innovation" three-year multinational collaboration project led by Prof. Yury Gogotsi, Drexel University (USA) to produce MXene nanomaterials. The project, which is a collaboration with Drexel University USA, Kalifa University in the UAE, the University of Padua in Italy and the Kyiv, Ukraine-based MXene manufacturing company Carbon-Ukraine, seeks to use MXene for water desalination and medical diagnostics. 

 
Carbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project organized by CREST at NATO HQ

Project meeting at NATO HQ, Brussel, BelgiumCarbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project (Advanced Digital Engineering Methods to Design MXene-based Nanocomposites for Electro-Magnetic Interference Shielding in Space), supported by NATO through the Science for Peace and Security Programme.

 
Joint patent application MRC, Carbon-Ukraine and Drexel University on highly porous MAX phase precursor for MXene synthesis published!

altExellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!

 
MXene Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future", IEEE NAP-2025 International Conference Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaOur team was very delighted to take part in International Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene event in Europe this year!  

 
Join us at the IEEE NAP-2025 International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future", Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaLast Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year!  Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!

 
New Publication Alert: "MXenes in Healthcare: Transformative Applications and Challenges in Medical Diagnostics and Therapeutics"

MXene in healthcareWe are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics.  Read the full article here: https://doi.org/10.1039/D4NR04853A.

 
Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis

Electrochemical etching of Ti 3 AlC 2 pellet electrodes in aqueous electrolytes: Set-up and workflow with schematic mechanisms to generatedelaminated EC-MXene flakesCongratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.

 
Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay

Potential Genotoxicity of MXenes Using a DNA Comet Assay. ACS Appl. Bio Mater. 2024, 7, 12, 8351-8366Congratulations to all collaborators with this interesting joint work!

 MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. Despite their proven biocompatibility and low cytotoxicity, their genotoxicity has not been addressed, so we investigated whether MXenes interfere with DNA integrity in cultured cells and examined the fragmentation of their chromosomal DNA by a DNA comet assay.