First published: 30 March 2025 https://doi.org/10.1002/smll.202500807
Pulsed Electrochemical Exfoliation for an HF-FreeSustainable MXene Synthesis
Markus Ostermann1, Marko Piljevi´c1,2, Elahe Akbari 3, Prathamesh Patil 1, Veronika Zahorodna 4, Ivan Baginskiy 4, Oleksiy Gogotsi 4, Carsten Gachot 5, Manel Rodríguez Ripoll 2, Markus Valtiner 1,3 and Pierluigi Bilotto1,5
1 CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
2 AC2T research GmbHA-2700 Wiener Neustadt, Austria
3 Applied Interface Physics, TU WienA-1040 Vienna, Austria
4 Carbon-Ukraine (Y-Carbon LLC) 04116 Kyiv, Ukraine
5 Institute of Engineering Design and Product Development, ResearchUnit Tribology (E307-05), TU WienA-1060 Vienna, Austria
MXenes are a 2D materials (2DM) class with high industrialization potential, owing to their superb properties and compositional variety. However, ensuring high etching efficiency in the synthesis process without involving toxic, hazardous or non-sustainable chemicals are challenging. In this work, an upscalable electrochemical MXene synthesis is presented. This novel protocol uses a non-toxic and sustainable sodium tetrafluoroborate/hydrochloric acid (NaBF4/HCl) electrolyte and increases etching efficiency by applying cathodic pulsing via pulse voltammetry. Hydrogen bubble formation restores electrochemical activity, and effectively supports 2D-sheet removal, allowing continuous etching at higher yields in situ. In detail, yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.

EC-MXene had an excellent quality with high purity as assessed using chemical mapping by scanning electron microscopy with energy dispersive electron spectroscopy (SEM/EDX) and surface termination analysis performed with X-ray photoelectron spectroscopy (XPS) and, for the first time, with low energy ion scattering (LEIS). Further properties of EC-MXenes such as dimensions and adhesion energy of single flakes, vibrational peaks, and interlayer spacing are provided by atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy (Raman), and transmission electron microscopy (TEM) respectively. Pulsed electrochemical synthesis is key to surface reactivation at the electrodes' interface, which results in improved exfoliation and quality of EC-MXenes. This paves the way for scaling up and green industrialization of MXenes.
Cite and read more about this work:
M. Ostermann, M. Piljević, E. Akbari, P. Patil, V. Zahorodna, I. Baginskiy, O. Gogotsi, C. Gachot, M. Rodríguez Ripoll, M. Valtiner, P. Bilotto, Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis. Small 2025, 2500807. https://doi.org/10.1002/smll.202500807
Read more publications on related topics:


MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.
Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Our team was very delighted to take part in International Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene event in Europe this year!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year! Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics. Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations to all collaborators with this interesting joint work!
Thank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties
Dr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.
MRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field. 
Together with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.