The 224th ECS Meeting in San Francisco, California | October 27 – November 1, 2013

Rus На русском Eng In English

The 224th ECS Meeting  in San Francisco, California | October 27 – November 1, 2013

The 224th Electrochemical Society ECS Meeting was held in the heart of San Francisco, at the meeting headquarters hotel, the Hilton San Francisco (333 O’Farrell Street, San Francisco, CA 94102).

ECS bridges the gaps among academia, research, and engineering—bringing together scientists from around the world for the exchange of technical information. This unique blend provides an unparalleled forum for the integration of these areas of science and technology.

This major international conference at the Hilton San Francisco included more than 50 topical symposia consisting of over 2,800 technical presentations, and feature the third international ECS Electrochemical Energy Summit (E2S), which is fast becoming a tradition at ECS meetings. 2S and ECS Short Courses help launch the meeting on Sunday, October 27.

Two days of special events were devoted to E2S, with a featured symposium that explored the energy– water nexus, the intersection of two critical resource issues. Events on Sunday included an afternoon program with three invited speakers, all experts in energy issues, along with a dynamic Energy Research Group Showcase, a Poster Session, and a reception. E2S events on Monday were devoted to the Energy–Water Nexus Symposium (A3), and The ECS Lecture. Also at the conference was held Technical Exhibit and General Society and Poster Sessions.

On Monday, October 28, graduate research assistant from Nanomaterials group of Drexel University, Kelsey B. Hatzell, have presented at Poster Session presentation on Methods for Enhancing the Flowable Electrode Capacitance in the Electrochemical Flow Capacitor, resulting by common work of Drexel research team - Majid Beidaghi, Muhammed Boota, Christopher R Dennison, Emin Caglan Kumbur and professor Yury Gogotsi.

Flowable Electrode Capacitance in the Electrochemical Flow Capacitor poster

Methods for Enhancing the Flowable Electrode Capacitance in the Electrochemical Flow Capacitor

K.B. Hatzell1, M. Beidaghi1, M. Boota1,2, C.R.Dennison1,2, E.C. Kumbur2, Y. Gogotsi2

1 A.J. Drexel Nanotechnology Institute, Department of Material Science and Engineering
2 Electrochemical Energy Systems Laboratory, Department of Mechanical Engineering and Mechanics Drexel University, Philadelphia, PA 19104
Abstract
Grid energy storage has emerged as one of the key challenges limiting grid resiliency and impeding the full integration of intermittent renewable energy technologies. A novel technology that can address this issue is the electrochemical flow capacitor (EFC). The primary difference between traditional supercapacitors and the EFC is that the EFC utilizes a flowable electrode for capacitive energy storage. The electrostatic nature of this charge storage mechanism allows for fast charging and discharging, which allows the EFC to be tailored to specific grid applications such as voltage and frequency regulation where short response times are needed.
Researchers have  investigated the effects of pore size distribution and ammonization of the carbon surface as possible methods to increase the capacitance of the active material in the flowable electrode.

 The 224th ECS Meeting in San Francisco, October 2013

K.B. Hatzell, at the Poster session presents common work on Methods for Enhancing the Flowable Electrode Capacitance in the Electrochemical Flow Capacitor

At the photo: Carlos Perez, Cristy Jost, Kelsey Hatzell, researchers from Drexel Nanomaterials Group, Drexel University

On Wednesday, October 30, 2013  Kelsey B. Hatzell, graduate research assistant from Nanomaterials group, Drexel University, made a report on High Electrosorption Capacity Electrodes for Capacitive Deionization at the Energy–Water Nexus Symposium (A3) of ECS Electrochemical Energy Summit, at 224th ECS Meeting.

High Electrosorption Capacity Electrodes for Capacitive Deionization

Kelsey B. Hatzell1, Etsuro Iwama2, Barbara Daffos2, Pierre-Louis Taberna2, Theo Tzedakis2, Alexei Gogotsi3 , Patrice Simon2, Yury Gogotsi1

1 A.J. Drexel Nanotechnology Institute, Materials Science and Engineering Department, Drexel University, Philadelphia, PA
2 Université Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France
3 Materials Research Centre, 03680 Kiev, Ukraine

Abstract

In water stressed regions across the globe, the rate of abstraction from deep aquifers often exceeds the rate of recharge. This leads to water shortages that are sometimes irreversible. In order to address these water shortages, researchers are looking to the most abundant of source water present on earth, seawater. However, to transform seawater into clean drinking water requires a range of energy intensive processes. Such processes include Reverse Osmosis, UV disinfection and Thermal Distillation. The most promising of these technologies is Reverse Osmosis, which can achieve 1.8 kWh/m3 in current commercial plants [1]. Nevertheless, this technology is fundamentally hindered by membrane fouling and slow water transport [2]. Thus, there has been a movement toward technologies that do not use membranes, and toward technologies that remove the minority component (salt) rather than the majority component (water) [3].

Figure  1.  (a)  Cyclic  voltammetry  performance  of  spherical  activated  carbon  based  electrodes  in  different  NaCl solutions at 2 mV s-1. (b) Rate performance of CDI  electrodes in different NaCl concentrated solutions.

Capacitive Deionization (CDI) is the process of removing ions from brackish/seawater by applying a potential between two electrodes, adsorbing ion on the surface, and producing clean water. Carbon materials are favorable as electrode materials in CDI systems because they exhibit high electric conductivity (~100 S m-1), specific surface area (up to 2000 m2 g-1), and high electrochemical stability. Herein, we report the use of spherical activated carbon beads (BET SSA 1219 m2 g-1) as the active material for electrodes for a capacitive deionization system. In a 0.15 M solution of NaCl at 10 mV s-1 the electrodes demonstrate a capacitance of 58 F/g which is on par with recently reported electrode capacitances. These results indicate that with further optimization, the spherical geometry of the particles may yield enhanced electrosorption capacity for CDI.

References: 
1.  Elimelech, M.; Phillip, W.A. The Future of seawater desalination:  Energy,  technology,  and  the environment.  Science 2011, 333-712-717. 
2.  Wang,  Evelyn  and  Karnik,  Rohit.  Graphene  Cleans up water. Nature Nanotechnology, 2012.
3.  Porada, S., Weinstein, L., Dash, R., Van Der Wal, A., Bryjak, M., Gogotsi, Y., & Biesheuvel, P. M. Water desalination using capacitive deionization with microporous  carbon  electrodes. ACS  Applied Materials & Interfaces, 4(3), 1194-1199, 2012.

Source: www.ecs.confex.com

 

News from MRC.ORG.UA

Our new collaborative research paper with Drexel team on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene

porous MAX phase technologyIn this study, we have optimized the synthesis of MAX phases for MXene manufacturing. The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive raw materials.

 
Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 
Read recently published paper about our collaborative work: MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

MXene Functionalized Kevlar Yarn via Automated,Continuous Dip CoatingThe rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed. 

 
MX-MAP project secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to University of Padova, Italy, October 2023

altMX-MAP project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed split secondment visit to project partner organization University of Padova (Italy). MX-MAP project works on development of the key strategies for MXene medical applications. 

 
CanbioSe Project Meeting and Project Workshop, September 26-27, 2023, Montpellier, France

altCanbioSe Project Meeting and Project Workshop was held  at European Institute of Membranes (IEM), University of Montpellier, France on September 26-27, 2023. The workshop was focused on the theme of "Commercializing Biosensors, Intellectual Property, and Knowledge Transfer from Academia to Industry.

 
IEEE NAP 2023: 2023 IEEE 13th International Conference “Nanomaterials: Applications & Properties” Sep 10, 2023 - Sep 15, 2023, Bratislava, Slovakia

altDr. Oleksiy Gogotsi and Veronika Zahorodna visited IEEE NAP 2023 conference held in Bratislava on September 10-15, 2023. The prime focus of the IEEE NAP-2023 was on nanoscale materials with emphasis on interdisciplinary research exploring and exploiting their unique physical and chemical proprieties for practical applications.

 
Visit to CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA)

altDirector of MRC and Carbon-Ukraine Dr. Oleksiy Gogotsi visited CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA). He meet with Dr. Pierluigi Bilotto, Dr. Chriatian Pichler and their colleagues, discussing novel materials and r&d activities for new technologies.

 
MX-MAP Session at YUCOMAT Conference 2023 "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

altMX-MAP Session was held during the YUCOMAT Conference 2023 titled: "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

 
THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023, HERCEG NOVI, MONTENEGRO, September 04-08, 2023

altThe conference was organised by the Materials Research Society of Sebia and supported by MRS-Singapore with the participation of a pleiad of distinguished scientists.

 
CANBIOSE secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to European Institute of Membranes in Montpellier, France

altCANBIOSE project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed secondment visit to project partner organization European Institute of Membranes in Montpellier (France) on August -September 2023.

 
MRC researchers visited Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to CANBIOSE project, April-May 2023

altMRC researchers Dr. Oleksiy Gogotsi and Veronika Zahorodna were visiting Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to close collaboration with AMU team led by Dr. Igor Iatsunskiy. 

 
Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.