Carbon Onions: Synthesis and Electrochemical Applications, by John K. McDonough and Yury Gogotsi

Carbon onions represent one of the least studied carbon nanomaterials, and are seeing a large increase in attention for energy storage applications.

Rus На русском
Eng In English

J.K. McDonough, Y. Gogotsi, Carbon Onions: Synthesis and Electrochemical Applications, Interface, Fall 2013, 61-66 (2013)

Beginning with fullerenes, moving to carbon nanotubes, and most recently to graphene, carbon nanomaterials are widely studied and used in a range of applications including electronics, tribology, and energy storage. However, two kinds of carbon nanoparticles, nanodiamond1 and carbon onions, 2 which were discovered before fullerenes and nanotubes, stayed for a long time in the shadow of more popular and better investigated nanocarbons. However, both have become increasingly studied in recent years. Carbon onions consist of spherical closed carbon shells and owe their name to the concentric layered structure resembling that of an onion. Carbon onions are sometimes called carbon nano-onions (CNOs) or onion-like carbon (OLC). Those names cover all kinds of concentric shells, from nested fullerenes to small (<100 nm) polyhedral nanostructures. This review is dedicated to those materials. We first discuss the structure of carbon onions and provide an overview of their synthesis methods. Also, electrochemical applications of carbon onions are reviewed with an emphasis on supercapacitor electrodes.

Sumio Iijima discovered OLC in 1980 while looking at a sample of carbon black in a transmission electron microscope. OLC was not produced in bulk, but rather was observed as a byproduct of carbon black synthesis. 3 About a decade later in 1992, Daniel Ugarte put forth a formation mechanism for the spherical graphitic structure. By focusing an electron beam on a sample of amorphous carbon, he was able to observe the formation of OLC in situ. Under an electron beam, the amorphous carbon graphitizes and begins to curl, and after sufficient time, the graphitic carbon closes on itself, forming an onion. The curving and closure occurs in order to minimize the surface energy of the newly formed edge planes of graphite, which is about 30x that of the basal plane. 4

Synthesis of Carbon Onions

Although OLC has been synthesized by many different methods in the last 30 years, large scale production (gram quantities) of OLC was first realized in 1994 by Vladimir Kuznetsov and co- workers, who used vacuum annealing of a nanodiamond precursor. 5,6 Similar to vacuum annealing, other groups have also utilized annealing in inert gases to transform nanodiamond, which is currently produced in ton quantities, 1 to OLC. 7 This is one of the methods that has a potential for industrial applications, as the onion yield is close to 100% and the manufacturing volume is only limited by the size of the furnace, and can be scaled accordingly. This material rarely has ideal spherical carbon onions, but can be produced in large quantities and finds practical applications. The transition of nanodiamond to a carbon onion can be seen in a molecular dynamics (MD) simulation (Fig. 1a-c). A 2-nm particle of nanodiamond (Fig. 1a) was annealed at 1400 °C (Fig. 1b) causing the outer layers of the nanodiamond to convert to graphitic carbon; however the annealing was not at high enough temperature to convert the entire particle. At higher temperatures (Fig. 1c), the entire particle is converted to an OLC particle. 8 At the highest annealing temperatures, the OLC particle begins to polygonize (Fig. 1d) as the structure becomes more ordered. The particle size of OLC produced via nanodiamond annealing is dependent on the nanodiamond precursor, which is generally about 5 nm in diameter, 1 producing onions in the 5-10 nm size range.Molecular dynamics simulation of (a) pristine nanodiamond, (b) nanodiamond annealed at  1400 °C, (c) nanodiamond annealed at 2000 °C, 8  and carbon onions synthesized via (d) annealing of  nanodiamond at 2000 °C, 18  (e) arc discharge between two carbon electrodes in water, 9  and (f) electron  beam irradiation

Arc discharge between two graphite electrodes in water represents another synthesis technique, generating OLC of slightly different structure than from annealing of nanodiamond. A dc current of 30 A and 17 V was applied between two graphite electrodes in water causing the carbon to evaporate at the location of the arc due to the extreme heat generated. The carbon vapor rapidly condenses into highly spherical OLC particles (Fig. 1e) and will float on the water surface, waiting to be collected for analysis. Consumption of the anode was about 100 mg/min, with the carbon products being produced at 20 mg/min. Synthesis by arc discharge can be performed at ambient pressure and temperature, avoiding the use of expensive equipment or catalysts, however the yield is low and samples contain nanotubes and amorphous carbon formed along with carbon onions. 9,10

Hollow carbon onions have been produced with the aid of metal nanoparticles. First, the metal and carbon were evaporated by an arc discharge method, similar to the one described earlier. The resulting product is a metal particle encapsulated by layers of graphitic carbon. When the system is exposed to the beam of a transmission electron microscope (TEM), the metal particle migrates a few atoms at a time through the carbon layers, which can be seen in situ, and leaves a hollow OLC particle (Fig 1f). 11 Laser excitation of ethylene causes the gas to decompose and produces solid carbon at high temperatures. The process, used by Gao, et al., is performed in air and uses a high-energy laser to convert the hydrocarbon to a solid carbon onion. This has potential to be used for large-scale production, as it can be scaled up, with authors showing a synthesis rate of 2.1 g/hour. This, along with annealing of detonation nanodiamond, is another feasible synthesis method for industry. 12

There are several other processes that were reported to produce carbon onions. Synthesis of carbon onions via chemical vapor deposition (CVD) utilized an iron catalyst supported on sodium chloride to decompose acetylene gas at temperatures ~400 °C. For less than 5 wt% iron, the carbon onions had an Fe3 C core. In contrast to other methods of carbon onion synthesis, this CVD process yields much larger diameter particles, ~50 nm. 13 Carbon ion implantation is another method to produce carbon onions, first used in 1998 by Cabioc’h, et al., which allowed the particle diameter to be tuned from 3 nm up to 30 nm by varying synthesis conditions such as temperature or implantation dose density. 14 Thermolysis is when a compound is decomposed by heat and has been shown to be a method for carbon onion synthesis. Using sodium azide (NaN3 ) and hexachlorobenzene (C6 Cl 6 ) as the reagents, a redox reaction causes an abrupt increase in temperature and pressure, producing large diameter carbon onions (30 - 100 nm) and other impurities, such as sodium chloride and amorphous carbon, which can be removed through a purification step. 15 Solid state carbonization of a phenolic resin precursor is a way to produce larger diameter carbon onions, ~40 nm. The precursor material was a phenol-formaldehyde resin and required the aid of a ferric nitrate catalyst at temperatures ~1000 °C. 16 High temperature evaporation of nanodiamond resulted in carbon condensing on a silicon substrate, with the carbon having the form of onions. The resulting particles had a diameter ~5 nm. This paper does not show any information regarding mass or yield, and it seems like a low yield process. 17

Structure of Carbon Onions

The onions consist of graphene shells with pentagonal and other defects required to have closed-shell structures. Structural properties of OLC vary significantly depending on the synthesis conditions. Focusing on OLC derived from the annealing of nanodiamond between 1300 and 1800 °C, the BET specific surface area (SSA) from N2 gas adsorption varies between 400 and 600 m2 /g (Fig. 2a). There is no accessible internal porosity for OLC, so the SSA is dependent on the density of the material and the surface of the particles. At lower annealing temperatures, there is residual diamond in the sample causing a lower SSA due to a higher density of nanodiamond compared to graphitic carbon forming onion shells. A maximum at 1500 °C is found after all diamond is transformed to OLC and the particle has a rough (defective) surface, and the subsequent decrease in SSA is due to sintering and formation of larger polygonized particles as annealing temperature in increased. The pore size distribution of OLC is broad in the mesoporous range, as any “pore” is actually formed by the space between multiple onions, and does not vary significantly between synthesis conditions. 18

(a) BET specific surface area of raw diamond soot and annealed nanodiamond (carbon onions), 18  (b) XRD patterns of annealed nanodiamond, 19  and (c)  Raman spectra of annealed nanodiamond.

 Capacitance normalized to specific surface area as a function of particle or pore size for mesoporous carbon, microporous carbon, zero- dimensional carbon onions, and one-dimensional carbon nanotubes, with the solid black line at 10 μF cm-2  representing a parallel plate capacitor (graphite).  (b) Capacitance normalized to specific surface area as a function of carbon onion particle diameter. Inset is an image displaying how cations adsorb on the  surface of a charged carbon onion particle, forming a double layer. 3

Conversion from nanodiamond to fully graphitized onions was investigated using X-ray diffraction (XRD) (Fig. 2b). The nanodiamond precursor shows pronounced diamond peaks, as expected, in addition to a small peak for (002) graphite. Upon annealing for 30 minutes at 1400 °C, three peaks appear for graphite that are relatively broad and weak in intensity, probably because the graphitic carbon is still defective and incomplete shells are formed. The graphitic carbon peaks grow for the sample annealed at 1700 °C, with some residual diamond peaks. Finally, after annealing at 2000 °C for 30 minutes, no diamond peaks are present, with very pronounced peaks for graphite. 19,20

Raman spectroscopy was used by Portet, et al. to study the surface structure of carbon onions as they are annealed from nanodiamond at temperatures between 1200 and 2000 °C (Fig. 2c). The nanodiamond precursor (UD50 grade1 ) used was a detonation nanodiamond soot, that is comprised of disordered carbon, carbon onions, and diamond nanoparticles, with ~25 wt% of sp3 carbon and ~75 wt% of sp2 carbon. 21 The Raman spectra for all samples contain two peaks at 1350 and 1600 cm-1 , corresponding to the D-band for disordered carbon and the G-band for graphitic carbon, respectively, in addition to second order peaks for the 2D band at ~2700 cm-1 and for the G+D band at ~2850 cm-1 . The spectrum for UD50 shows two very broad D and G peaks, and the 2D and D+G peaks are unresolvable, implying a highly disordered graphitic carbon present in the detonation soot. Annealing the nanodiamond at 1200 °C causes a narrowing of all peaks, and appearance of the resonant peaks. As the samples are annealed at higher temperatures, up to 2000 °C, the peaks continue to narrow as the sp3 carbon and disordered carbon is further graphitized. The ratio of the D to G band (ID/I G, not shown) decreases significantly upon annealing due to the increase in ordering of the carbon particles. 22

Electrochemical Applications of Carbon Onions

Electric double layer capacitors (EDLC), also known by their commercial names as supercapacitors or ultracapacitors, are non- faradaic electrical energy storage devices that store charge on the surface of a high surface area carbon electrode, often made of porous activated carbon. 23,24 Materials for supercapacitors range from microporous and mesoporous carbons, to one-dimensional carbon nanotubes, to two-dimensional graphene. The theoretical capacitance per surface area of these materials as a function of pore size and particle size is shown in Fig. 3a. Below a pore size or particle size of ~5 nm, the normalized capacitance deviates from planar graphite, with mesoporous materials decreasing in capacitance and materials with a positive curvature, i.e., carbon onions, increasing significantly. This figure shows that the smallest 0-D carbon onions can potentially outperform other materials in terms of capacitance per area. Carbon onions debuted as a material for EDLCs in 2006-2007 in both aqueous25,26 and organic22 electrolytes. Since then, there has been an immense amount of attention given to OLC for both batteries27-29 and supercapacitors, 18,22,30-34 as both active materials and easily dispersible conductive additives (ultimate carbon black). The high power capabilities of carbon onions, with excellent capacitance retention at current densities as high as 200 mA/cm2 (15 A/g) have been highlighted in the very first paper. 22 The theoretical values from Fig. 3a compared to published data in Fig. 3b show a very good agreement and an increase in capacitance as onion size decreases. 35 A few years later, in 2010, the carbon onion micro- supercapacitor was fabricated and tested in comparison to other systems at the same length scale. 30 The micro-supercapacitor using interdigital OLC electrodes was able to operate efficiently at rates as high as 100 V/s (Fig. 4), much faster than conventional EDLCs operating at rates well below 1 V/s. A plot of the discharge current vs. scan rate derived from cyclic voltammetry should be linear for a capacitive system and will deviate at high enough rates due to diffusion limitations of the ions in electrolyte. From Fig. 4a, the OLC micro-supercapacitor has a linear relationship up to about 100 V/s. Tetraethylammonium ions at the surface of a carbon onion particle are shown in Fig. 4b. The performance of other systems in comparison with the OLC micro- supercapacitor is shown in a Ragone plot (Fig. 4c). Carbon onions have roughly 10x the power of activated carbon, however a lower energy density because of the lower surface area. Electrolytic capacitors have a comparable or higher power density, yet carbon onions have more than 10x the energy density. 30

discharge current vs. scan rate for carbon onions in TEA-BF4  in acetonitrile, (b) schematic image of a carbon onion surrounded  by TEA+ ions, and (c) Ragone plot of several micro-devices, highlighting the outstanding performance of a carbon onion micro- supercapacitor

Recently, OLC and carbon nanotubes (CNTs) were used to store energy from -50 to 100 °C—a wider temperature range than any porous activated carbons can deliver with organic or aqueous electrolytes. The exohedral carbons were combined with a eutectic mixture of ionic liquids, which remains liquid at temperatures down to -80 °C. The arrangement of ions around the respective electrode materials can be seen in Fig. 5a and 5b. Both, carbon onions and nanotubes were found to operate efficiently at temperatures as low as -50 °C and as high as +100 °C. Conventional EDLC electrolytes utilize propylene carbonate (PC) as the solvent and begin to see a decrease in performance below 0 °C (Fig. 5c). Activated carbon was used in the same eutectic mixture of ionic liquids and failed at temperatures of -20 °C, even at slow charge- discharge rates. 36 This shows that adsorption of ions on the exohedral surfaces of onions (Fig. 5a) minimizes ion transport limitations allowing either very fast charge-discharge rates (Fig. 4a) or use of electrolytes with low mobility (Fig. 5c).

 Schematic of ions surrounding (a) carbon onions deposited on a current collector and (b) carbon nanotubes grown directly on  a current collector, and (c) electrochemical performance of carbon nanotubes and carbon onions with their capacitance normalized to  capacitance at 20 °C.

Conclusions

Carbon onions represent one of the least studied carbon nanomaterials, and are seeing a large increase in attention for energy storage applications. Because of their unique 0-D structure, small (<10 nm) diameter, high electrical conductivity, and relatively easy dispersion, compared to 1-D nanotubes and 2-D graphene, OLC has been shown to be ideal as a conductive additive to battery and supercapacitor electrodes, or as active material for supercapacitor electrodes for high-power applications and for low temperature devices using ionic liquid electrolytes.

Acknowledgments

This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors are thankful to Dr. Vadym Mochalin (Drexel University) for Fig. 4b.

About the Authors

John K. McDonough received his BS in Physics in 2009 from Lycoming College. Presently, he is a PhD candidate at Drexel University, Philadelphia, in the Department of Materials Science and Engineering, studying under the guidance of Yury Gogotsi. His research focuses on carbon nanomaterials for electrical energy storage, specifically on onion-like carbon for electrochemical capacitors. McDonough serves as the President of the MRS Chapter at Drexel and is also highly involved in the ECS and ASM Chapters.

Yury Gogotsi is a Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University in Philadelphia. He also serves as Director of the A. J. Drexel Nanotechnology Institute. His PhD is in Physical Chemistry from Kiev Polytechnic and he holds a DSc in Materials Engineering from the Ukrainian Academy of Sciences. His research group works on nanostructured carbons, two-dimensional carbides, and their electrochemical applications. He has co- authored more than 300 journal papers. He is a Fellow of ECS, AAAS, MRS, ACerS, and a member of the World Academy of Ceramics. He may be reached at Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

References

1.  V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nature Nanotechnol., 7, 11 (2012).
2.  Yu.V. Butenko, L. Siller, and M. R. C. Hunt, in  Carbon Nanomaterials, 2nd edition, Y. Gogotsi, V. Presser, Eds., CRC Press, pp. 279-231 (2013).
3.  S. Iijima,  J. Cryst Growth,  50, 675 (1980).
4.  D. Ugarte, Nature, 359, 707 (1992).
5.  V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Malkov, and V. M. Titov,  Chem. Phys. Lett.,  222, 343 (1994).
6.  V. L. Kuznetsov, A. L. Chuvilin, E. M. Moroz, V. N. Kolomiichuk, S. K. Shaikhutdinov, Y. V. Butenko, and I. Y. Malkov, Carbon, 32, 873 (1994).

7.  J. Cebik, J. K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, and S. Osswald, Nanotechnology, 24, 205703 (2013).
8.  L. Hawelek, A. Brodka, S. Tomita, J. C. Dore, V. Honkimäki, and A. Burian, Diam. Relat. Mater., 20, 1333 (2011).
9.  I. Alexandrou, H. Wang, N. Sano, and G. A. J. Amaratunga, J. Chem. Phys., 120, 1055 (2004).
10.  N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, and K. Iimura,  J. Appl. Phys., 92, 2783 (2002).
11.  F. Banhart,  Reports on Progress in Physics, 62, 1181 (1999).
12.  Y. Gao, Y. S. Zhou, J. B. Park, H. Wang, X. N. He, H. F. Luo, L. Jiang, and Y. F. Lu,  Nanotechnology,  22, 165604 (2011).
13.  Y. Yang, X. Liu, X. Guo, H. Wen, and B. Xu,  J. Nanopart. Res.,  13, 1979 (2011).
14.  T. Cabioc’h, M. Jaouen, M. F. Denanot, and P. Bechet,  Appl. Phys. Lett., 73, 3096 (1998).

15.  M. Bystrzejewski, M. H. Rummeli, T. Gemming, H. Lange, and A. Huczko, New Carbon Mater., 25, 1 (2010).
16.  M. Zhao, H. Song, X. Chen, and W. Lian, Acta Mater., 55, 6144 (2007).
17.  S. Krishnamurthy, Y. V. Butenko, V. R. Dhanak, M. R. C. Hunt, and L. Šiller, Carbon, 52, 145 (2013).
18.  J. K. McDonough, A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, and Y. Gogotsi, Carbon, 50, 3298 (2012).
19.  S. Tomita, A. Burian, J. C. Dore, D. LeBolloch, M. Fujii, and S. Hayashi, Carbon, 40, 1469 (2002).
20.  S. Tomita, T. Sakurai, H. Ohta, M. Fujii, and S. Hayashi, J. Chem. Phys., 114, 7477 (2001).
21.  S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi,  J. Amer. Chem. Soc., 128, 11635 (2006).
22.  C. Portet, G. Yushin, and Y. Gogotsi, Carbon, 45, 2511 (2007).

23.  P. Simon and Y. Gogotsi,  Philos. Trans. Royal Society A: Math., Phys. and Engin. Sci., 368, 3457 (2010).
24.  P. Simon and Y. Gogotsi,  Nature Materials, 7, 845 (2008).
25.  E. G. Bushueva, P. S. Galkin, A. V. Okotrub, L. G. Bulusheva, N. N. Gavrilov, V. L. Kuznetsov, and S. I. Moiseekov, Phys. Status Solidi B, 245, 2296 (2008).
26.  E. G. Bushueva, A. V. Okotrub, P. S. Galkin, V. L. Kuznetsov, and S. I. Moseenkov, in  Nanocarbon & Nanodiamond, p. 11, St. Petersburg, Russia (2006).
27.  F.-D. Han, B. Yao, and Y.-J. Bai,  J. Phys. Chem. C, 115, 8923 (2011).
28.  H. J. Zhang, H. H. Song, J. S. Zhou, H. K. Zhang, and X. H. Chen, Acta Phys-Chim. Sin., 26, 1259 (2010).
29.  W. Gu, N. Peters, and G. Yushin, Carbon, 53, 292 (2013).
30.  D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, and P. Simon,  Nature Nanotechnol., 5, 651 (2010).

31.  C. Portet, J. Chmiola, Y. Gogotsi, S. Park, and K. Lian, Electrochim. Acta, 53, 7675 (2008).
32.  G. Feng, D.-E. Jiang, and P. T. Cummings,  J. Chem. Theory and Computation, 8, 1058 (2012).
33.  M. M. Hantel, V. Presser, J. K. McDonough, G. Feng, P. T. Cummings, Y. Gogotsi, and R. Kötz, J. Electrochem. Soc.,  159, A1897 (2012).
34.  P. F. Fulvio, R. T. Mayes, X. Wang, S. M. Mahurin, J. C. Bauer, V. Presser, J. McDonough, Y. Gogotsi, and S. Dai, Adv. Funct. Mater., 21, 2208 (2011).
35.  J. S. Huang, B. G. Sumpter, V. Meunier, G. Yushin, C. Portet, and Y. Gogotsi,  J. Mater. Res.,  25, 1525 (2010).
36.  R. Lin, P.-L. Taberna, S. B. Fantini, V. Presser, C. R. Pérez, F. O. Malbosc, N. L. Rupesinghe, K. B. K. Teo, Y. Gogotsi, and P. Simon, J. Phys. Chem. Lett., 2, 2396 (2011).

Source: J.K. McDonough, Y. Gogotsi, Carbon Onions: Synthesis and Electrochemical Applications, Interface, Fall 2013, 61-66 (2013)


 

News from MRC.ORG.UA

Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis

Electrochemical etching of Ti 3 AlC 2 pellet electrodes in aqueous electrolytes: Set-up and workflow with schematic mechanisms to generatedelaminated EC-MXene flakesCongratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.

 
Ti₃C₂Tₓ MXene–silk fibroin composite films: engineering DC conductivity and properties in the THz range

MXene-silk composite film studyThank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about  MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties

 
Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay

Potential Genotoxicity of MXenes Using a DNA Comet Assay. ACS Appl. Bio Mater. 2024, 7, 12, 8351-8366Congratulations to all collaborators with this interesting joint work!

 MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. Despite their proven biocompatibility and low cytotoxicity, their genotoxicity has not been addressed, so we investigated whether MXenes interfere with DNA integrity in cultured cells and examined the fragmentation of their chromosomal DNA by a DNA comet assay. 

 
2024 MRS Fall Meeting & Exhibit, Boston, Massachusetts, from December 1-6, 2024

2024 MRS Fall Meeting & Exhibit, Poster Session, from left to right: Prof. Yury Gogotsi, Prof. Maksym Pogorielov, Prof. Goknur Buke, Dr. Babak Anasori and Dr. Oleksiy GogotsiDr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.

 
Our team participated in the 3rd International Conference at Drexel University "MXene: Changing the World", August 5-7, 2024

3rd international MXene Confernce at Drexel University, August 5-7, 2024, Philadelphia, USAMRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field. 

 
Visit to our project partners from Worcester Polytechnic Institute that joined to ESCULAPE research project consortium

Visiting Functional Biomaterials Lab at Worcester Polytechnic Institute led by Dr. Jeannine Coburne

Looking forward to work together with Dr. Lyubov Titova and Dr. Jeannine Coubourne from Worcester Polytechnic Institute on structural and biomedical applications of MXenes and study of their properties within HORIZON EUROPE MSCA RISE ESCULAPE project!

 
MXenes for biomedical applications: MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma

MXene-Polydopamine-antiCEACAM1 Antibody Complex fro cancer therapyTogether with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.

 
Looking forward our collaboration with Dr. Vladimir Tsukruk's team from Georgia Tech University in trilateral research project IMPRESS-U on MXene-Based Composite Bio-membranes with Tailored Properties

SSU, MRC and Carbon-Ukraine team visited research group led by Prof. Vladimir Tsukruk from Georgia Tech University, Atlanta, USA

Looking forward our collaboration with Dr. Vladimir Tsukruk's team from Georgia Tech University in trilateral research project IMPRESS-U, involving teams from Ukraine, Latvia, and the United States funded by National Science Foundation (NSF). project is focused on MXene-Based Composite Bio-membranes with Tailored Properties. Can't wait our Kick-off meeting that will be held at Latvias University in Riga with all project participants.

 

 
Our new collaborative research paper with Drexel team on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene

porous MAX phase technologyIn this study, we have optimized the synthesis of MAX phases for MXene manufacturing. The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive raw materials.

 
Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 
Read recently published paper about our collaborative work: MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

MXene Functionalized Kevlar Yarn via Automated,Continuous Dip CoatingThe rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed. 

 
MX-MAP project secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to University of Padova, Italy, October 2023

altMX-MAP project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed split secondment visit to project partner organization University of Padova (Italy). MX-MAP project works on development of the key strategies for MXene medical applications. 

 
CanbioSe Project Meeting and Project Workshop, September 26-27, 2023, Montpellier, France

altCanbioSe Project Meeting and Project Workshop was held  at European Institute of Membranes (IEM), University of Montpellier, France on September 26-27, 2023. The workshop was focused on the theme of "Commercializing Biosensors, Intellectual Property, and Knowledge Transfer from Academia to Industry.

 
IEEE NAP 2023: 2023 IEEE 13th International Conference “Nanomaterials: Applications & Properties” Sep 10, 2023 - Sep 15, 2023, Bratislava, Slovakia

altDr. Oleksiy Gogotsi and Veronika Zahorodna visited IEEE NAP 2023 conference held in Bratislava on September 10-15, 2023. The prime focus of the IEEE NAP-2023 was on nanoscale materials with emphasis on interdisciplinary research exploring and exploiting their unique physical and chemical proprieties for practical applications.

 
Visit to CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA)

altDirector of MRC and Carbon-Ukraine Dr. Oleksiy Gogotsi visited CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA). He meet with Dr. Pierluigi Bilotto, Dr. Chriatian Pichler and their colleagues, discussing novel materials and r&d activities for new technologies.