ESCULAPE
Project ID: 101131147 MSCA-RISE-2022-SE-01 - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)
The project ESCULAPE project is targeted to building a strong interdisciplinary partnership in order to support joint research and innovative activities in the fields of biomaterials, polymer science, nanotechnology, tissue engineering, microbiology and medicine with the aim to explore development and implementation of new medical engineering solutions for regenerative medicine and wearable electronics. The project will offer novel solutions using MXenes to modify properties and qualities of porous 3D electrospun nanoscaffolds, which will be used in tissue engineering for regenerative biomedicine and development of wearable electronics on both woven and non-woven fabrics. The main goal of the ESCULAPE project is to build a new training partnership to develop innovative strategies to achieve advanced biomaterials with target-oriented properties (electrical conductivity, biocompatibility etc.) that will be able to deliver specific features for regeneration of heart and nerve tissues, regulation of homeostasis in iPSCs, as well as in development of wearable electronics.
Electro-conductive polymeric 3D scaffolds as novel strategies for biomedical applications
ESCULAPE Grant agreement ID: 101131147
DOI 10.3030/101131147
EC signature date 26 July 2023
Funded under Marie Skłodowska-Curie Actions (MSCA)
Coordinated by University of Latvia
Start date 1 November 2023 End date 31 October 2027
Funding Scheme HORIZON-TMA-MSCA-SE - HORIZON TMA MSCA Staff Exchanges
ESCULAPE project is targeted to building a strong interdisciplinary partnership in order to support joint research and innovative activities in the fields of biomaterials, polymer science, nanotechnology, tissue engineering, microbiology and medicine with the aim to explore development and implementation of new medical engineering solutions for regenerative medicine and wearable electronics. The project will offer novel solutions (from the manufacturing stage to exploitation strategies) using MXenes, a new class of two dimensional (2D) materials consisting of transition metal carbides/carbonitrides. MXenes will be employed to modify properties and qualities of porous 3D electrospun nanoscaffolds, which will be used in tissue engineering for regenerative biomedicine and development of wearable electronics on both woven and non-woven fabrics. The main goal of the ESCULAPE project is to build a new training partnership to develop innovative strategies to achieve advanced biomaterials with target-oriented properties (electrical conductivity, biocompatibility etc.) that will be able to deliver specific features for regeneration of heart and nerve tissues, regulation of homeostasis in iPSCs, as well as in development of wearable electronics.
Coordinator
LATVIJAS UNIVERSITATE
RAINA BOULEVARD 19
1586 RIGA
Latvia
Participants:
SUMY STATE UNIVERSITY
Ukraine
ITA-SUOMEN YLIOPISTO
Finland
UNIWERSYTET IM. ADAMA MICKIEWICZA WPOZNANIU
Poland
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
France
MATERIALS RESEARCH CENTER LLC
Ukraine
BIOFABICS LDA
Portugal
RESPILON MEMBRANES S.R.O.
Czechia
Partners:
UNIVERSIDADE ESTADUAL DE CAMPINAS
Brazil
THE UNIVERSITY OF MANITOBA
Canada
WORCESTER POLYTECHNIC INSTITUTE
United States
Recent updates on ESCULAPE project progress:
MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.

Looking forward to work together with Dr. Lyubov Titova and Dr. Jeannine Coubourne from Worcester Polytechnic Institute on structural and biomedical applications of MXenes and study of their properties within HORIZON EUROPE MSCA RISE ESCULAPE project!


Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year! Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics. Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.
Congratulations to all collaborators with this interesting joint work!
Thank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties
Dr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.
MRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field.
Together with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.
