Drexel's MXene Filter Materials will be used for Wearable Artificial Kidney Technology

RusНа русскомEngIn English

MXene materials Drexel University’s MXene material is one step closer to transforming the lives of people suffering from end-stage kidney disease. Nephria Bio, Inc., a U.S.-based spin-off of the South Korean medical device company EOFlow Co., Ltd., has signed a licensing agreement with the University to use the two-dimensional material, discovered at Drexel, as a filter in a wearable artificial kidney device it is developing. The technology could allow many of the millions of people suffering from end-stage kidney disease worldwide to move more freely, without spending hours each week anchored to large dialysis machines.
“Our fundamental study of titanium carbide MXene supported by NSF showed that MXene is biocompatible, able of adsorbing a variety of small molecules, and holds a lot of promise in medical applications, so it is exciting to see it applied for improving and really changing dialysis — an area of need in health care that can help millions of people,” said Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel’s College of Engineering, who is a world leader in developing and studying MXenes.
In the late stages of kidney disease, the kidneys have trouble filtering fluids and small molecules, including urea, and some of these molecules become toxic in the body when they begin to accumulate. Dialysis supports the kidneys in filtering toxins and excess fluids from the blood, but the process is time-consuming and requires patients to remain attached to immobile dialysis machines.
“This work could give hundreds of thousands of people with kidney disease the ability to live life more freely and fully,” said Meera Harhay, MD, an associate professor of Medicine in Drexel’s College of Medicine, who has been working with Gogotsi to study MXene’s application in dialysis. “A wearable artificial kidney would allow people suffering from kidney disease to more easily work and travel and maintain a more active lifestyle, which has been associated with positive health outcomes.”
A single facility-based hemodialysis session can require up to 200 liters of purified water to clear the build-up of urea and other toxic molecules from a patient’s blood. Developing a portable dialysis machine means figuring out how to reduce the amount of water the wearer would have to carry with them.
MXene is the solution, according to Jesse Kim, founding CEO of Nephria Bio and its parent company, EOFlow, because it filters urea and other electrolytes well enough that a single liter of water could be quickly cleaned and reused for the entirety of the process.
“In order to develop a wearable dialysis device, you need a material that can filter urea, which is a very, very small molecule that is also very soluble, it dissolves in water so well that it’s really hard to filter,” Kim said. “It’s the most difficult toxin to filter. And that’s why dialysis takes so long. If you go to a dialysis center, it takes 4-6 hours per session.”
MXene poresMXene is a two-dimensional material just a few atoms thick that has demonstrated a number exceptional abilities since its discovery in Drexel’s College of Engineering in 2011. Among them, the ability to filter tiny particles from liquid, which researchers in the Department Materials Science and Engineering identified several years ago, made it a prime candidate for use in dialysis.
"Two technologies are essential to develop wearable artificial kidneys; One is a small, light actuator with low power consumption, and the other is an efficient material for urea filtration. Nephria Bio secured them both—the proprietary electroosmotic pump technology from EOFlow, and the filter technology from Drexel University,” Kim said. “With the unique combination of these enabling technologies, Nephria Bio feels that it can substantially enhance dialysis therapy for kidney patients.”
Drexel researchers Gogotsi, who discovered MXenes along with fellow College of Engineering professor Michel Barsoum, PhD, and Harhay, a kidney disease specialist, have been working with Kim with support from the Coulter-Drexel Translational Research Partnership Program to combine MXene with EOFlow’s patented electrochemical actuator pump, to produce a lightweight-but-powerful filtration device that will enable portable dialysis.
The EOFlow pump is the key component of a disposable insulin patch, which recently entered the market. It launched Nephria Bio in January 2021 with the specific goal of exploring how it could be used in dialysis.
Nephria Bio’s plan is to use the pump and MXene material to produce a lightweight, highly efficient filtration system that would enable reuse and recycling of the filtration water, called dialysate. Putting the technology in a flexible, wearable, cartridge-based system, called EOPump-based Continuous Ambulatory Renal Replacement Therapy (EOCARRT™), will allow ambulatory dialysis. The system could supplement or bridge traditional dialysis therapy and, ultimately, supplant it — depending on the therapeutic needs and how the device performs, Kim said.
“Working with Nephria Bio through the Coulter program has revealed the promise of MXene materials in biomedical technology. This collaboration is taking the work of many Drexel researchers one step closer to realizing its potential as a medical application” said Kathie Jordan, PhD, director of the Coulter-Drexel program.

Source: https://drexel.edu/now/archive/2021/April/MXene-NephriaBio-wearable-artificial-kidney/

 

 
 
 

 

 

News from MRC.ORG.UA

Drexel's MXene Filter Materials will be used for Wearable Artificial Kidney Technology

MXene pores“Our fundamental study of titanium carbide MXene supported by NSF showed that MXene is biocompatible, able of adsorbing a variety of small molecules, and holds a lot of promise in medical applications, so it is exciting to see it applied for improving and really changing dialysis — an area of need in health care that can help millions of people,” said Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel’s College of Engineering, who is a world leader in developing and studying MXenes.

 
MXene Coating Could Prevent Electromagnetic Interference in Wearable Devices

mxene-emi-fabricResearchers at Drexel University’s College of Engineering have reported that MXene coated fabric is highly effective for blocking electromagnetic waves and potentially harmful radiation. The discovery is a key development for efforts to weave technological capabilities into clothing and accessories. 

 
MRC and Drexel collaborative article on Scalable MXene synthesis is listed among the most accessed in Advanced Engineering Materials journal for the whole year

bulk MXene

This article is also Highly Cited in Web of Science (top 1% of all papers in the field).

 
H2020 MSCA RISE CanBioSe project activities - EsR/ER training and scientific seminar held in MRC, Kyiv, Ukraine, July 30-August 01, 2020

Canbiose project training and seminar

Training of early-staged researchers involved in CanBioSe research works on nanomaterials processing and scientific seminar on Advances in nanomaterials research for biomedical applications, were held with invited experts.

 
Scalable Production System for the Promising, 2D Nanomaterials MXenes

altFor one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties

 
CANBIOSE project participant from MRC completed secondment visit to partner organization Vilnius University, Lithuania, on February-March 2020 due to CANBIOSE project

altCANBIOSE project participant from MRC performed secondment visit to project partner organization Vilnius University, Lithuania, on February 24 - March 14 2020.

 
H2020 MSCA RISE SALSETH project participant from MRC V. Balitskiy started secondment at University of Novi Sad, Serbia

altSALSETH project participant from MRC Vitalii Balitskiy was hosted by partners from University of Novi Sad (UNS), Serbia, during his secondment visit according to the project plan.

 
SALSETH Project Kick-off meeting was held in University of Novi Sad, Serbia, on february 28, 2020

altResearch team from Materials Research Centre (MRC), Kyiv, Ukraine, was represented by Vitalii Balitskiy, who made a presentation to project partners about the MRC company, its capabilities, current research projects and main activities.

 
The science of the future and the use of intelligent nanomaterials in advanced technologies. Lecture by Professor Yury Gogotsi for students, schoolchildren of Junior Academy of Sciences of Ukraine in Igor Sikorsky Kyiv Polytechnic Institute,Feb 24, 2020

alt

The science of the future and the use of smart nanomaterials in new technologies. Lecture by Professor Yury Gogotsi for students, and schoolchildren of the Junior Academy of Sciences of Ukraine in Sikorsky Kyiv Polytechnic Institute, February 27, 2020

 
Horizon 2020 NANO2DAY project participant A.Stepura from Polymer Institute of Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Center (MRC), Kiev, Ukraine, on December 2019-February 2020

pisas--secondment-to-mrc-jan-2020_13.jpg - 86.27 KbAnastasiia Stepura from Polymer Institute Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Centre  on December 2019- February 2020 during her secondment performing research works due to H2020 NANO2DAY project.

 
H2020 NANO2DAY project participants from MRC Veronika Zahorodna and Oleksiy Gogotsi visited partner organization Polymer Instityte SAS, Bratislava, Slovakia on January 2020

altResearchers from the Materials Research Center (MRC), Kiev, Ukraine,  Oleksiy Gogotsi and Veronika Zahorodna visited Horizon 2020 NANO2DAY project partner organization Polymer Institute of Slovak Academy of Science, Bratislava, Slovakia on January 2020. In cooperation with PISAS colleagues they were working on MXene doped polymer nanocomposites.

 
H2020 NANO2DAY project participant from MRC Ivan Hryshko was visiting project partner organization University of Latvia, Riga, on November-December 2019

altResearch engineer from MRC Ivan Hryshko is being visiting the University of Latvia, where he held a seminar on MXenes

 
Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 12/11-11/12/2019, Lisboan, Portugal

altMRC Director O. Gogotsi and EsR Veronika Zahorodna in a secondment to LNEC, Lisboan, Portugal participated in a work meeting discussing project results and performing engineering research works due to H2020 MSCA RISE project No 690968 NANOGUARD2AR.

 
Horizon 2020 CANBIOSE project participants from Materials Research Center (MRC), Kiev, Ukraine visited partner organization Adam Mickiewicz University in Poznań, Poland, on October 27-November 27, 2019

altIn cooperation with AMU colleagues they were working on nanomaterials testing and characterization.

 
MXENE AT THE FRONTIER OF THE 2D MATERIALS WORLD BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019, October 15–17, 2019, Favorite Parkhotel, Mainz, Germany

altThe symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.