MXene Coating Could Prevent Electromagnetic Interference in Wearable Devices

RusНа русскомEngIn English

Researchers at Drexel University’s College of Engineering have reported that fabric coated with a conductive, two-dimensional material called MXene, is highly effective at blocking electromagnetic waves and potentially harmful radiation. The discovery is a key development for efforts to weave technological capabilities into clothing and accessories. 

MXene fabric coating

Materials that block electromagnetic waves had a commercial moment a handful of years ago when fears that high-tech thieves could scan or copy credit cards, passports or hack into laptops and contactless car keys had people putting them in special wallets, bags and protected pockets. While reporting suggests these fears were overblown, the demand for this sort of textile is likely to grow as more manufacturers incorporate sensing and communication technologies into fabrics.

They could also be deployed in national defense organizations to shield devices from tracing and hacking and to protect people from strong microwave radiation – the kind that might have been used against American and Canadian diplomats according to recent reports.

“Wearable devices will need shielding from the electromagnetic interference (EMI) regularly produced by mobile devices, and that shielding should be integrated as part of the garment,” said Yury Gogotsi, PhD, Distinguished University and Bach professor at Drexel, who led research recently published in the materials science journal CARBON. “We have known for some time that MXene has the ability to block electromagnetic interference better than other materials, but this discovery shows that it can effectively adhere to fabrics and maintain its unique shielding capabilities.”

The interference comes from residual electromagnetic fields produced by electronics devices. Users notice it as a buzz, a slowing or temporary stall in a device’s function. It’s a momentary inconvenience, but these moments are becoming more frequent with expanded use of mobile devices and connected technology – including wearables.

Improving the design of these devices, according to Gogotsi, entails using a shielding material to contain electromagnetic field generated by the device, as well as protecting it from interference produced by other devices. Gogotsi’s team, which first produced and studied the conductive two-dimensional MXene materials nearly a decade ago, has been testing MXene coatings for this role, with promising results.

“MXenes are well-suited for use as shielding because they can be stably produced as a spray coating, an ink or a paint, so they can be applied to textiles without adding much weight or taking up more room,” Gogotsi said. “We have also discovered that MXene shielding can absorb and reflect electromagnetic waves, so it not only protects the wearable devices and electronic gadgets, but also protects people from strong electromagnetic field.”


The researchers’ most recent finding shows that dip-coating regular cotton or linen fabric in a MXene solution will turn it into an equally formidable shielding material – blocking EMI at greater than 99.9% effectiveness.

MXene flakes suspended in solution naturally adhere to the fibers in conventional cotton and linen fabrics because of their electric charge. This produces a thorough and durable coating, without the need for the pre- or post-treatment processes to produce most commercial conductive yarns and fabrics.

mxene-emi-fabricAs part of the study, the MXene-coated fabrics were tested after being stored under normal conditions for two years and they showed only a slight drop in shielding efficiency – roughly 10%.

“This work provides a much-improved alternative to current EMI shielding textiles,” said Simge Uzun, a doctoral student in Gogotsi’s research group, who conducted this research as a part of her PhD program. “Not only do MXene-coated fabrics exceed the performance of commercial metal-coated fabrics, but they can be sustainably produced by coating form aqueous solution without extra processing or chemical additives.”

This research was supported by the U.S. Department of Energy.

In addition to Gogotsi, Genevieve Dion, of Drexel’s Center for Functional Fabrics; Meikang Han, PhD, Kanit Hantanasirisakul, and Adam Goad, of the A.J. Drexel Nanomaterials Institute; and Christina Strobel, an Electrical and Computer Engineering undergraduate student who worked in Gogotsi’s lab in the Department of Materials Science and Engineering, participated in this research.

 
 MRC encourage you to learn more about the exciting possibilities we can offer you, and we look forward to partnering with you to improve your material's synthesis and manufacturing.

Read more about the MXene synthesis technology in our publication:

C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

For further information and detailes about ordering Etching Reactor for MXene synthesis please contact us at  Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  or our partners at  Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Get a quote for MXene synthesis for research needs

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 

News from MRC.ORG.UA

Paper on Electrochemically synthesized MXenes as sustainable solid lubricants: Mechanistic insights into tribofilm formation and interfacial dynamics

Electrochemically synthesized MXenes as sustainable solid lubricants. DOI:10.1016/j.carbon.2025.121136Highlights
• First application report on bubble-assisted sustainable EC-MXene
• EC-MXene keeps tribological performance with with mainly O-terminations
• EC-MXene forms a stable tribofilm, supported by experiments and DFT

 
Our team visited Innovative & Industrial 2D/Advanced Materials Summit & Expo I2DM 2025 at Khalifa University in Abu-Dhabi, November 2025

Innovative & Industrial 2D/Advanced Materials Summit & Expo (I2DM2025)We are excited to share that our Carbon-Ukraine (Y-Carbon LLC) company participated in the I2DM Summit and Expo 2025 at Khalifa University in Abu-Dhabi! Huge thanks to Research & Innovation Center for Graphene and 2D Materials (RIC2D) for hosting such a high-level event.It was an incredible opportunity to meet brilliant researchers and innovators working on the next generation of 2D materials. The insights and energy from the summit will definitely drive new ideas in our own development.

 
Carbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup

Visit to XPANCEOCarbon-Ukraine team had the unique opportunity to visit XPANCEO - a Dubai-based deep tech startup company that is developing the first smart contact lenses with AR vision and health monitoring features, working on truly cutting-edge developments.

 
Our Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University!

Kick off meeting at Khalifa University on  MX-Innovation project funded by RIC2D programOur Carbon-Ukraine team (Y-Carbon LLC) are thrilled to start a new RIC2D project MX-Innovation in collaboration with Drexel University Yury Gogotsi and Khalifa University! Amazing lab tours to project collaborators from Khalifa University, great discussions, strong networking, and a wonderful platform for future collaboration.

 
MXene-based electrochemical glucose biosensors: Comparative enhancement with Aquivion and Nafion

Schematic representation of working electrode development and electrochemical measurement of glucose concentrationThis work provides valuable insights into the use of pristine Ti₃C₂Tₓ MXenes (rather than composites) as promising materials for next-generation glucose biosensors. The study underscores the importance of surface chemistry, film stability, and polymer optimization in achieving high-performance sensing platforms. 

 
Engineering Safer MXenes for Biomedical Applications: Effects of Etching and Delamination on Biocompatibility of Ti-Based MXenes

MXenes for biomedical useMXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.

 
2D MXenes in the Design of Heavy Metal Ion Sensors

2D MXenes in the design of heavy metal ion sensorsAn excellent review highlighting how MXene-based sensors can help tackle one of today’s pressing environmental challenges — heavy metal contamination. Excited to see such impactful work moving the field of environmental monitoring and sensor technology forward!

 
RIC2D MX-Innovation project on MXene production for water desalination and medical diagnostics takes off — Ukraine-based MXene manufacturing company Carbon-Ukraine (Y-Carbon LLC) on board!

MXene Carbon-Ukraine company in MX-Innovation project RIC2D with Dreexl University and Khakifa University

Carbon-Ukraine team is very exited to particpate in newly launched "MX-Innovation" three-year multinational collaboration project led by Prof. Yury Gogotsi, Drexel University (USA) to produce MXene nanomaterials. The project, which is a collaboration with Drexel University USA, Kalifa University in the UAE, the University of Padua in Italy and the Kyiv, Ukraine-based MXene manufacturing company Carbon-Ukraine, seeks to use MXene for water desalination and medical diagnostics. 

 
Carbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project organized by CREST at NATO HQ

Project meeting at NATO HQ, Brussel, BelgiumCarbon-Ukraine team was truly delighted to take part in the kickoff meeting of the ATHENA Project (Advanced Digital Engineering Methods to Design MXene-based Nanocomposites for Electro-Magnetic Interference Shielding in Space), supported by NATO through the Science for Peace and Security Programme.

 
Joint patent application MRC, Carbon-Ukraine and Drexel University on highly porous MAX phase precursor for MXene synthesis published!

altExellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!

 
MXene Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future", IEEE NAP-2025 International Conference Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaOur team was very delighted to take part in International Symposium "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene event in Europe this year!  

 
Join us at the IEEE NAP-2025 International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future", Bratislava, September 7-12, 2025

MXene Symposium 2025 in BratislavaLast Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year!  Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!

 
New Publication Alert: "MXenes in Healthcare: Transformative Applications and Challenges in Medical Diagnostics and Therapeutics"

MXene in healthcareWe are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics.  Read the full article here: https://doi.org/10.1039/D4NR04853A.

 
Pulsed Electrochemical Exfoliation for an HF-Free Sustainable MXene Synthesis

Electrochemical etching of Ti 3 AlC 2 pellet electrodes in aqueous electrolytes: Set-up and workflow with schematic mechanisms to generatedelaminated EC-MXene flakesCongratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.

 
Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay

Potential Genotoxicity of MXenes Using a DNA Comet Assay. ACS Appl. Bio Mater. 2024, 7, 12, 8351-8366Congratulations to all collaborators with this interesting joint work!

 MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. Despite their proven biocompatibility and low cytotoxicity, their genotoxicity has not been addressed, so we investigated whether MXenes interfere with DNA integrity in cultured cells and examined the fragmentation of their chromosomal DNA by a DNA comet assay.