ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Rus На русском Eng In English

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

It was love at first sight for Yury Gogotsi. Hooked on chemistry since his earliest high school classes, a young Yuri followed his passion into the field of metallurgy, steering toward the synthesis and characterization of new materials to earn a doctorate in physical chemistry from what was then known as Kiev Polytechnic (currently, Igor Sikorsky National Technical University of Ukraine).

Finding a faculty position in the US while working as a post-doc in Europe was one of the greatest challenges of Gogotsi’s career. Eventually, though, patience and hard work paid off, and his earlier studies of non-oxide ceramics and carbon materials set the focus for his own research group at Drexel University, where he currently holds a Charles T. and Ruth M. Bach Distinguished University Professorship in materials science and engineering. Since 2000, his group has been leading advances in our understanding of carbon nanomaterials – including graphene, nanotubes, nanodiamond, and nanoporous carbons – as well as 2D carbides and nitrides (especially MXenes and BN).

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”

He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

A major focus of his group’s work is electrochemical energy storage, and he has produced several seminal works on the topic in collaboration with Patrice Simon (Université Paul Sabatier). Gogotsi points out the many opportunities for international cooperation created since the formation of the EU, the fall of the Soviet empire, and the opening of China, but pauses to question the influence of politics on emerging collaborations. He also believes that universities are not doing enough to support scientific discovery right from the beginning of what he calls the “life-long learning process”, only teaching the dry basics and failing to properly engage students or to help people appreciate the role of science in society.

Science is indeed something that gets into your blood: the failure of others to appreciate the excitement of discovery must be particularly difficult for him to identify with. “I cannot imagine doing anything else,” Gogotsi says of his chosen career. His own advice to students? “There are no dogmas in science – challenge everything.”

Be inspired by MXenes: read the outstanding and freely accessible  review of their electronic and optical properties by Hantanasirisakul and Gogotsi in the Advanced Materials Hall of Fame virtual issue, and see how his group is using them for paper-based energy storage.




Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)

Kanit Hantanasirisakul, Yury Gogotsi  ⁄  Advanced Materials   ⁄   First Published: 19 November 2018

altThe electronic and optical properties, as well as related applications of 2D transition metal carbides, carbonitrides, and nitrides(MXenes) are reviewed.
This very large and rapidly growing family of 2D materials has demonstrated attractive electrical, optical, electrochemical, and mechanical properties, which lead to numerous plasmonic, optoelectronic, and other applications. Read more...

Direct Writing of Additive‐Free MXene‐in‐Water Ink for Electronics and Energy Storage

Evan Quain, Tyler S. Mathis, Narendra Kurra, Kathleen Maleski, Katherine L. Van Aken, Mohamed Alhabeb, Husam N. Alshareef , Yury Gogotsi

 Advanced Materials   ⁄   First published: 05 September 2018  ⁄

 Additive‐free, single step formulations of MXene‐in‐water inks are developed from clay‐like titanium carbide (Ti3C2) sediments. Solution‐processable Ti3C2inks are compatible with stamping, printing, painting, and writing on a variety of substrates. Specifically, MXene‐in‐water inks at higher concentrations of 30 mg mL−1 are employed in commercially available pens for dispensing and patterning 2D MXene directly.These MXene pens are employed either manually or automatically using an AxiDraw, enabling direct‐writing and complex patterning of functional MXene devices.
Versatile MXene pens show compatible writing on a variety of substrates, including paper and polymers, where the deposited ink is used as a passive circuit, similar to silver and copper nanoparticle inks. Written MXene lines without additional post‐treatment exhibit length dependent resistance, showing typical resistivity values between carbon based and metal nanoparticle inks. Current collector‐free fabrication of MXene micro‐supercapacitors is demonstrated on unconventional platforms including paper, textiles, and curved surfaces directly. Read more...



News from MRC.ORG.UA

Drexel's MXene Filter Materials will be used for Wearable Artificial Kidney Technology

MXene pores“Our fundamental study of titanium carbide MXene supported by NSF showed that MXene is biocompatible, able of adsorbing a variety of small molecules, and holds a lot of promise in medical applications, so it is exciting to see it applied for improving and really changing dialysis — an area of need in health care that can help millions of people,” said Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel’s College of Engineering, who is a world leader in developing and studying MXenes.

MXene Coating Could Prevent Electromagnetic Interference in Wearable Devices

mxene-emi-fabricResearchers at Drexel University’s College of Engineering have reported that MXene coated fabric is highly effective for blocking electromagnetic waves and potentially harmful radiation. The discovery is a key development for efforts to weave technological capabilities into clothing and accessories. 

MRC and Drexel collaborative article on Scalable MXene synthesis is listed among the most accessed in Advanced Engineering Materials journal for the whole year

bulk MXene

This article is also Highly Cited in Web of Science (top 1% of all papers in the field).

H2020 MSCA RISE CanBioSe project activities - EsR/ER training and scientific seminar held in MRC, Kyiv, Ukraine, July 30-August 01, 2020

Canbiose project training and seminar

Training of early-staged researchers involved in CanBioSe research works on nanomaterials processing and scientific seminar on Advances in nanomaterials research for biomedical applications, were held with invited experts.

Scalable Production System for the Promising, 2D Nanomaterials MXenes

altFor one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties

CANBIOSE project participant from MRC completed secondment visit to partner organization Vilnius University, Lithuania, on February-March 2020 due to CANBIOSE project

altCANBIOSE project participant from MRC performed secondment visit to project partner organization Vilnius University, Lithuania, on February 24 - March 14 2020.

H2020 MSCA RISE SALSETH project participant from MRC V. Balitskiy started secondment at University of Novi Sad, Serbia

altSALSETH project participant from MRC Vitalii Balitskiy was hosted by partners from University of Novi Sad (UNS), Serbia, during his secondment visit according to the project plan.

SALSETH Project Kick-off meeting was held in University of Novi Sad, Serbia, on february 28, 2020

altResearch team from Materials Research Centre (MRC), Kyiv, Ukraine, was represented by Vitalii Balitskiy, who made a presentation to project partners about the MRC company, its capabilities, current research projects and main activities.

The science of the future and the use of intelligent nanomaterials in advanced technologies. Lecture by Professor Yury Gogotsi for students, schoolchildren of Junior Academy of Sciences of Ukraine in Igor Sikorsky Kyiv Polytechnic Institute,Feb 24, 2020


The science of the future and the use of smart nanomaterials in new technologies. Lecture by Professor Yury Gogotsi for students, and schoolchildren of the Junior Academy of Sciences of Ukraine in Sikorsky Kyiv Polytechnic Institute, February 27, 2020

Horizon 2020 NANO2DAY project participant A.Stepura from Polymer Institute of Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Center (MRC), Kiev, Ukraine, on December 2019-February 2020

pisas--secondment-to-mrc-jan-2020_13.jpg - 86.27 KbAnastasiia Stepura from Polymer Institute Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Centre  on December 2019- February 2020 during her secondment performing research works due to H2020 NANO2DAY project.

H2020 NANO2DAY project participants from MRC Veronika Zahorodna and Oleksiy Gogotsi visited partner organization Polymer Instityte SAS, Bratislava, Slovakia on January 2020

altResearchers from the Materials Research Center (MRC), Kiev, Ukraine,  Oleksiy Gogotsi and Veronika Zahorodna visited Horizon 2020 NANO2DAY project partner organization Polymer Institute of Slovak Academy of Science, Bratislava, Slovakia on January 2020. In cooperation with PISAS colleagues they were working on MXene doped polymer nanocomposites.

H2020 NANO2DAY project participant from MRC Ivan Hryshko was visiting project partner organization University of Latvia, Riga, on November-December 2019

altResearch engineer from MRC Ivan Hryshko is being visiting the University of Latvia, where he held a seminar on MXenes

Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 12/11-11/12/2019, Lisboan, Portugal

altMRC Director O. Gogotsi and EsR Veronika Zahorodna in a secondment to LNEC, Lisboan, Portugal participated in a work meeting discussing project results and performing engineering research works due to H2020 MSCA RISE project No 690968 NANOGUARD2AR.

Horizon 2020 CANBIOSE project participants from Materials Research Center (MRC), Kiev, Ukraine visited partner organization Adam Mickiewicz University in Poznań, Poland, on October 27-November 27, 2019

altIn cooperation with AMU colleagues they were working on nanomaterials testing and characterization.


altThe symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.