ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Rus На русском Eng In English

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

It was love at first sight for Yury Gogotsi. Hooked on chemistry since his earliest high school classes, a young Yuri followed his passion into the field of metallurgy, steering toward the synthesis and characterization of new materials to earn a doctorate in physical chemistry from what was then known as Kiev Polytechnic (currently, Igor Sikorsky National Technical University of Ukraine).

Finding a faculty position in the US while working as a post-doc in Europe was one of the greatest challenges of Gogotsi’s career. Eventually, though, patience and hard work paid off, and his earlier studies of non-oxide ceramics and carbon materials set the focus for his own research group at Drexel University, where he currently holds a Charles T. and Ruth M. Bach Distinguished University Professorship in materials science and engineering. Since 2000, his group has been leading advances in our understanding of carbon nanomaterials – including graphene, nanotubes, nanodiamond, and nanoporous carbons – as well as 2D carbides and nitrides (especially MXenes and BN).

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”

He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

A major focus of his group’s work is electrochemical energy storage, and he has produced several seminal works on the topic in collaboration with Patrice Simon (Université Paul Sabatier). Gogotsi points out the many opportunities for international cooperation created since the formation of the EU, the fall of the Soviet empire, and the opening of China, but pauses to question the influence of politics on emerging collaborations. He also believes that universities are not doing enough to support scientific discovery right from the beginning of what he calls the “life-long learning process”, only teaching the dry basics and failing to properly engage students or to help people appreciate the role of science in society.

Science is indeed something that gets into your blood: the failure of others to appreciate the excitement of discovery must be particularly difficult for him to identify with. “I cannot imagine doing anything else,” Gogotsi says of his chosen career. His own advice to students? “There are no dogmas in science – challenge everything.”

Be inspired by MXenes: read the outstanding and freely accessible  review of their electronic and optical properties by Hantanasirisakul and Gogotsi in the Advanced Materials Hall of Fame virtual issue, and see how his group is using them for paper-based energy storage.




Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)

Kanit Hantanasirisakul, Yury Gogotsi  ⁄  Advanced Materials   ⁄   First Published: 19 November 2018

altThe electronic and optical properties, as well as related applications of 2D transition metal carbides, carbonitrides, and nitrides(MXenes) are reviewed.
This very large and rapidly growing family of 2D materials has demonstrated attractive electrical, optical, electrochemical, and mechanical properties, which lead to numerous plasmonic, optoelectronic, and other applications. Read more...

Direct Writing of Additive‐Free MXene‐in‐Water Ink for Electronics and Energy Storage

Evan Quain, Tyler S. Mathis, Narendra Kurra, Kathleen Maleski, Katherine L. Van Aken, Mohamed Alhabeb, Husam N. Alshareef , Yury Gogotsi

 Advanced Materials   ⁄   First published: 05 September 2018  ⁄

 Additive‐free, single step formulations of MXene‐in‐water inks are developed from clay‐like titanium carbide (Ti3C2) sediments. Solution‐processable Ti3C2inks are compatible with stamping, printing, painting, and writing on a variety of substrates. Specifically, MXene‐in‐water inks at higher concentrations of 30 mg mL−1 are employed in commercially available pens for dispensing and patterning 2D MXene directly.These MXene pens are employed either manually or automatically using an AxiDraw, enabling direct‐writing and complex patterning of functional MXene devices.
Versatile MXene pens show compatible writing on a variety of substrates, including paper and polymers, where the deposited ink is used as a passive circuit, similar to silver and copper nanoparticle inks. Written MXene lines without additional post‐treatment exhibit length dependent resistance, showing typical resistivity values between carbon based and metal nanoparticle inks. Current collector‐free fabrication of MXene micro‐supercapacitors is demonstrated on unconventional platforms including paper, textiles, and curved surfaces directly. Read more...



News from MRC.ORG.UA

Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022


Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

H2020-MSCA-RISE NANO2DAY research project, last updates


Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.

MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser

Development of tailored MXene PTT treatment targeting tumor cells. We demonstrate both low toxicity and good biocompatibility of this MXene in vitro, as well as a favorable safety profile based on the experiments in vivo.Presenting our recent collaborative research paper on  MXene use for PPT anticancer therapy, the biocompatibility of MXenes in vitro and in vivo studies:

Sergiy Kyrylenko, Oleksiy Gogotsi, Ivan Baginskiy, Vitalii Balitskyi, Veronika Zahorodna, Yevheniia Husak, Ilya Yanko, Mykolay Pernakov, Anton Roshchupkin, Mykola Lyndin, Bernhard B. Singer, Volodymyr Buranych, Alexander Pogrebnjak, Oksana Sulaieva, Oleksandr Solodovnyk, Yury Gogotsi, Maksym Pogorielov, MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl. Mater. Interfaces 2022, 14, 25, 28683–28696,

MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications

Presenting our collaborative paper on recen advances in MXene research and their potential applications:

Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials. 2021; 11(12):3412.

MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

Presenting our joint research paper supported by CANBIOSE research project: and published in Biosensors and Bioelectronics: MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

If you want to help and support the purchase of aid consignments, shipping cost to Ukraine and delivery within Ukraine to the places in nee, please donate

Our volunteersBig thanks to all our friends, partners, volunteers for help and their tireless work! We continue to help our defenders and deliver military equipment, humanitarian aid, tactical medicine and special medical supplies to units of Ukrainian Army, territorial defense and hospitals on the front line!

Delivering help to Ukraine from the USA, Europe, and the rest of the world!

3.jpg - 197.81 KbOur organization in Kyiv, Materials Research Center, is well aware of the needs in Ukraine now. Together with our partners, fellow Ukrainian scientists, we have organized a warehouse in Lviv, where we collect cargos and distribute them throughout Ukraine, with detailed reports confirming the delivery to the final destination, including photos of the transfer. We have transportation that can pick cargo in Poland and deliver it through a green corridor for humanitarian cargos at the Polish-Ukrainian border. 
We are ready to respond promptly, as required by the situation in Ukraine. If there are individuals, foundations or volunteer organizations willing to send help to Ukraine from Europe or the United States, we are ready to accept it in our warehouses, make collection or individual parties according to your request and pass them on to those in need. All humanitarian aid, first aid, and protective gear will be delivered to the final destination.
Please contact Dr. Oleksiy Gogotsi, MRC Director: Tel / Viber / WhatsApp / Telegram / Signal: + 380 63 233 2443, Cell phone in the USA: +1 808 203 8092, e-mail:
Being currently on a business trip in Philadelphia, the United States, we can meet with you in person, if needed.

MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine


MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine via volunteers. Specialized military first aid medical supplies were provided by the Special Forces Foundation, Green Berets Humanitarian Fund, USA

Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA to territorial defences, army unit and 2 hospitals


Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA via the Kernel Volunteer Group for the Territorial Defense of Kyiv, Poltava, Vinnytsia, Voznesensk, as well as some military unit in Kyiv and Ternopil. Also part of medical supplies is transferred to hospitals in Krasnopillia in Sumy region and Voznesensk in Mykolaiv region


MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv


MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv from the American Green Beret Humanitarian Fund for some military units.

BSU and LU parthers secondment visits to MRC an seminar discussion of ongoing research works under the NANO2DAY project at Materials Research Center, February 2022


During the secondment visits of project partners from BSU and LU to MRC research works were performed and a seminar discussion of ongoing research works and obtained results was held under the NANO2DAY project.

Registration is now open for the upcoming MXene Certificate Course, February 7-11, 2022 from Professor Yury Gogotsi and his team, Drexel University, USA

altRegistration is now open for the upcoming MXene Certificate Course, February 7-11, 2022! This virtual certificate course will teach best practices for the synthesis (2 days), characterization (2 days), and electrochemical measurements of MXenes with a new lecture in the biomedical applications of MXenes (you may choose electrochemical measurements OR biomedical applications - 1 day).

Visiting resracher S. Stankevich performed secondment to MRC due to NANO2DAY project

altStanislav Stankevich, research assistant from Latvias University, Riga, Latvia, performed secondment visit to Materials Research Center, Kyiv, Ukraine, due to the MSCA RISE research project NANO2DAY working on project tasks related to MXene based composites. Dates of performed secondment visit November 17-December 16, 2021.