Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

Just Squeeze In — Drexel Researchers Discover When Spaces Are Tight, Nature Loosens Its Laws

It turns out that when they’re in a hurry and space is limited, ions, like people, will find a way to cram in — even if that means defying nature’s norms. Recently published research from an international team of scientists, including Drexel University’s Yury Gogotsi, PhD, shows that the charged particles will actually forgo their “opposites attract” behavior, called Coulombic ordering, when confined in the tiny pores of a nanomaterial. This discovery could be a pivotal development for energy storage, water treatment and alternative energy production technologies, which all involve ions packing into nanoporous materials.An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.

In their paper, which was recently published in the journal Nature Materials, the researchers explain how Coulombic ordering in liquid salts starts to break down when ions are confined in small spaces — specifically carbon pores less than a nanometer in diameter. And the narrower the pore, the less the ions adhere to Coulombic ordering.

“This is the first time breaking of the Coulombic ordering in subnanometer pores has been convincingly demonstrated,” said Gogotsi, an author of the paper, who is the Distinguished University and Bach professor in Drexel’s College of Engineering. “The breaking of symmetry principals, like Coulombic ordering, plays an essential role in nature. But many of these processes occur without us understanding them and knowing their mechanisms. Science can reveal those hidden processes. And if we understand them, we can eventually develop better technology by working at the same nanometer and subnanometer scales that nature does.”

To make its discovery, the team — including researchers from Shinshu University in Japan; Loughborough University in the United Kingdom; The University of Adelaide in Australia; and Sorbonne University, the French Research Network on Electrochemical Energy Storage, and Paul Sabatier University in France — created two sets of carbon nanomaterials. One had pores at least a nanometer in diameter and one with pores less than a nanometer. They then used the materials to draw in ionic liquid as if they were a sponge sopping up water.

In ionic liquids, which are room-temperature liquid salts often used as solvents in the chemical industry, ions are layered in full compliance with the alternating positive-negative pattern of Coulombic ordering. But as the ionic liquid drew into the carbon nanopores it forced the ions to line up in single- and double-file lines. And, like a flock of elementary schoolers running for the bus, they didn’t always end up in line next to their usual cohorts.

“In this state, the Coulombic ordering of the liquid is broken,” the authors wrote. “Ions of the same charge neighbor each other due to a screening of their electrostatic interactions by the image charges induced in the pore walls.”

When packed into pore channels as narrow as a nanometer or less, ions will forgo their typical positive-negative alternating charge ordering. They will form a single (right) or double-file (left) line, many times queuing up next to ions of the same charge.

The team observed this disruption in the natural order of ions through x-ray scattering and modeled the process to explain the experimental observations. They also reported that the non-Coulombic ordering became more pronounced when an electric charge was applied to the carbon material.

“Our results suggest the existence of a molecular-scale mechanism that reduces the Coulombic repulsion energy between co-ions that become closer to each other,” they wrote. This mechanism, they theorize, is linked to the charge temporarily imposed on the walls of the carbon pores. This “image charge,” they write, offsets the natural electrostatic repulsion of ions of the same charge, to allow the channels to fill with same-charged ions lined up next to each other.

Gogotsi suggests this discovery could make it more feasible to use ionic liquids in batteries and other energy storage devices, which has been examined as a method for making batteries safer but has yet to catch on because it limits their performance.

“We can get safer batteries and supercapacitors when using ionic liquid electrolytes because they are not flammable like the electrolyte solution currently used in these devices,” Gogotsi said. “Also, since there is no solvent, the entire volume is occupied by ions and we may be able to store more energy compared to conventional electrolytes that use organic solvents.”

He’s also looking at this discovery as one that could have a significant impact on the push for water desalination technology. Membranes currently being developed to turn salt water into drinking water could be improved with this knowledge about ion behavior within subnanometer pores.

“This work adds fundamental understanding to how different things can behave below one nanometer in scale,” Gogotsi said. “We go beyond nanotechnology and into sub-nanoscale process — that’s the next frontier.”






News from MRC.ORG.UA

MXene Coating Could Prevent Electromagnetic Interference in Wearable Devices

mxene-emi-fabricResearchers at Drexel University’s College of Engineering have reported that MXene coated fabric is highly effective for blocking electromagnetic waves and potentially harmful radiation. The discovery is a key development for efforts to weave technological capabilities into clothing and accessories. 

MRC and Drexel collaborative article on Scalable MXene synthesis is listed among the most accessed in Advanced Engineering Materials journal for the whole year

bulk MXene

This article is also Highly Cited in Web of Science (top 1% of all papers in the field).

H2020 MSCA RISE CanBioSe project activities - EsR/ER training and scientific seminar held in MRC, Kyiv, Ukraine, July 30-August 01, 2020

Canbiose project training and seminar

Training of early-staged researchers involved in CanBioSe research works on nanomaterials processing and scientific seminar on Advances in nanomaterials research for biomedical applications, were held with invited experts.

Scalable Production System for the Promising, 2D Nanomaterials MXenes

altFor one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties

CANBIOSE project participant from MRC completed secondment visit to partner organization Vilnius University, Lithuania, on February-March 2020 due to CANBIOSE project

altCANBIOSE project participant from MRC performed secondment visit to project partner organization Vilnius University, Lithuania, on February 24 - March 14 2020.

H2020 MSCA RISE SALSETH project participant from MRC V. Balitskiy started secondment at University of Novi Sad, Serbia

altSALSETH project participant from MRC Vitalii Balitskiy was hosted by partners from University of Novi Sad (UNS), Serbia, during his secondment visit according to the project plan.

SALSETH Project Kick-off meeting was held in University of Novi Sad, Serbia, on february 28, 2020

altResearch team from Materials Research Centre (MRC), Kyiv, Ukraine, was represented by Vitalii Balitskiy, who made a presentation to project partners about the MRC company, its capabilities, current research projects and main activities.

The science of the future and the use of intelligent nanomaterials in advanced technologies. Lecture by Professor Yury Gogotsi for students, schoolchildren of Junior Academy of Sciences of Ukraine in Igor Sikorsky Kyiv Polytechnic Institute,Feb 24, 2020


The science of the future and the use of smart nanomaterials in new technologies. Lecture by Professor Yury Gogotsi for students, and schoolchildren of the Junior Academy of Sciences of Ukraine in Sikorsky Kyiv Polytechnic Institute, February 27, 2020

Horizon 2020 NANO2DAY project participant A.Stepura from Polymer Institute of Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Center (MRC), Kiev, Ukraine, on December 2019-February 2020

pisas--secondment-to-mrc-jan-2020_13.jpg - 86.27 KbAnastasiia Stepura from Polymer Institute Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Centre  on December 2019- February 2020 during her secondment performing research works due to H2020 NANO2DAY project.

H2020 NANO2DAY project participants from MRC Veronika Zahorodna and Oleksiy Gogotsi visited partner organization Polymer Instityte SAS, Bratislava, Slovakia on January 2020

altResearchers from the Materials Research Center (MRC), Kiev, Ukraine,  Oleksiy Gogotsi and Veronika Zahorodna visited Horizon 2020 NANO2DAY project partner organization Polymer Institute of Slovak Academy of Science, Bratislava, Slovakia on January 2020. In cooperation with PISAS colleagues they were working on MXene doped polymer nanocomposites.

H2020 NANO2DAY project participant from MRC Ivan Hryshko was visiting project partner organization University of Latvia, Riga, on November-December 2019

altResearch engineer from MRC Ivan Hryshko is being visiting the University of Latvia, where he held a seminar on MXenes

Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 12/11-11/12/2019, Lisboan, Portugal

altMRC Director O. Gogotsi and EsR Veronika Zahorodna in a secondment to LNEC, Lisboan, Portugal participated in a work meeting discussing project results and performing engineering research works due to H2020 MSCA RISE project No 690968 NANOGUARD2AR.

Horizon 2020 CANBIOSE project participants from Materials Research Center (MRC), Kiev, Ukraine visited partner organization Adam Mickiewicz University in Poznań, Poland, on October 27-November 27, 2019

altIn cooperation with AMU colleagues they were working on nanomaterials testing and characterization.


altThe symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.

Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Zozulia Iuliia and Vitalii Balitskiy visited the partner organization Kaunas University of Technology, Kaunas, Lithuania on August 2019 - October 2019

altIn cooperation with KTU colleagues they were working on engineering simulations of mechanical  properties of nanomaterials and nanocomposites.