Shaping the Future of Energy Storage With Conductive Clay

altIn the race to find materials of ever increasing thinness, surface area and conductivity to make better performing battery electrodes, a lump of clay might have just taken the lead. Materials scientists from Drexel University’s College of Engineering invented the clay, which is both highly conductive and can easily be molded into a variety of shapes and sizes. It represents a turn away from the rather complicated and costly processing—currently used to make materials for lithium-ion batteries and supercapacitors—and toward one that looks a bit like rolling out cookie dough with results that are even sweeter from an energy storage standpoint.

With the publication of their recipe for “conductive MXene clay” in the Dec. 4 edition of Nature, the researchers suggest a significant shift in the way electrodes for storage devices are produced.

Researchers at Drexel University have developed a way to make a highly conductive clay from MXene and water.

The clay, which already exhibits conductivity on par with that of metals, can be turned into a film—usable in an electrode—simply by rolling or pressing it.

“Both the physical properties of the clay, consisting of two-dimensional titanium carbide particles, as well as its performance characteristics, seem to make it an exceptionally viable candidate for use in energy storage devices like batteries and supercapacitors,” said Yury Gogotsi, PhD, Distinguished University and Trustee Chair professor in the College of Engineering, and director of the A.J. Drexel Nanomaterials Institute, who is a co-author of the paper. “The procedure to make the clay also uses much safer, readily available ingredients than the ones we used to produce MXene electrodes in the past.”

The key to the utility of this material, according to Michel Barsoum, PhD, Distinguished professor in the College of Engineering and one of the inventors of MXenes, is in its form.
“As anybody who has played with mud can attest, clay is hydrophilic –water-loving,” Barsoum said. “Clay is also layered and when hydrated, the water molecules slide between the layers and render it plastic that in turn can be readily shaped into complex shapes. The same happens here; when we add water to MXene, water penetrates between the layers and endows the resulting material with plasticity and moldability. Graphene—a material widely studied for use in electrodes- on the other hand, is conductive but does not like water—it is hydrophobic. What we discovered is a conductive two-dimensional layered material that also loves water. The fact that we can now roll our electrodes rapidly and efficiently, and not have to use binders and/or conductive additives renders this material quite attractive from a mass production point of view.”
A graphic illustration of the properties of MXene clay.The discovery came about while Michael Ghidiu, a doctoral student advised by Barsoum and Gogotsi in the Department of Materials Science and Engineering at Drexel, was testing a new method for making MXenes—two-dimensional materials invented at Drexel that are among the leading candidates for use in next-generation batteries and supercapacitors.

Straying slightly from the original chemical etching process pioneered at Drexel, which uses highly toxic hydrofluoric acid, Ghidiu instead used a fluoride salt and hydrochloric acid to etch aluminum out of a titanium-based, layered ceramic material called a MAX phase—also discovered at Drexel by Barsoum. These two ingredients, which are household names in chemistry class and are also much safer to handle than hydrofluoric acid, reduced the MAX phase to a pile of black particles. To stop the reaction and remove any residual chemicals, Ghidiu washed the material in water. But rather than finding the familiar layered MXene particles, he discovered that the etched sediment absorbed the water to form a clay-like material.

“We expected to find a slightly different material coming from the new process—but nothing like this,” Ghidiu said. “We were just hoping for a safer, less expensive way to make MXenes, when something even better landed on the table.”
clay rolling

One of the first tests the team performed on the clay was to see if it could be pressed into a thin layer while retaining its conductive properties—after all, its initial goal was to make a conductive film.

“Being able to roll clay into a film is quite a contrast in production time, safety and cost when compared to the two most common practices for making electrode materials,” Ghidiu said. “Both the etching and peeling process used to make MXenes and a flaking, filtration and deposition method—like paper making—employ strong acids and costly, less common materials. The clay-making process is much simpler, quicker and safer.”

MXene clay made by researchers at Drexel University can be rolled into any thickness while retaining its conductivity.  With the new discovery, all these steps are avoided, greatly simplifying the processing. Now the researchers can simply etch the MAX phase, wash the resulting material and roll the resultant clay into films of various thicknesses.

“I would say the most important benefit to the new method—besides its increased capacitance—is that we can now make an electrode ready-to-go in about 15 minutes, whereas the total process before from the same starting point would be on the order of a day,” Ghidiu said.

The availability of its ingredients also makes the clay rather appealing from a production standpoint.

“Being able to make a conductive clay, essentially out of titanium carbide with the help of a common fluoride salt and hydrochloric acid is the materials equivalent of making a chocolate chip cookie—everybody has these ingredients in the pantry,” said Barsoum.

But a question that resounds through most materials research of this nature is, of course: what can it do with an electrical charge?

Thorough investigation of the clay’s electrochemical performance, conducted by Maria Lukatskaya a doctoral student advised by Gogotsi and Barsoum, which was reported in the paper, indicated that the clay’s ability to store an electrical charge is three times that reported for MXenes produced by hydrofluoric acid etching. This means it could find uses in the batteries that power cell phones and start cars, or even in a supercapacitor that could one day help renewable energy sources fit into a regional power grid.
clay circuit

“Keep in mind this is the very first generation of the material that we’re testing,” Lukatskaya said. “We haven’t done a thing to augment its abilities, and at 900 F/cm3 it’s already showing a higher capacitance per unit of volume than most other materials. We’re also reporting that it does not lose any of its capacitance through more than 10,000 charge/discharge cycles, so we’re talking about quite a special lump of clay here.”

Changing materials scientists’ medium from film to clay presents a variety of new avenues for research and manufacturing. The clay can be molded into any shape. It could also be watered down into a conductive paint that hardens within a few minutes while still retaining its conductive properties. This means it could have applications in batteries, conductive transparent coatings and reinforcement for composites among others.
An electron microscopic study of the clay particles dispersed in water, conducted by co-author Mengqiang Zhao, PhD, a post-doctoral researcher in Gogotsi’s group, showed that the clay is made up of single layers of MXene about one nanometer—just a few atoms—thick. This atomically thin structure indicates that researchers are likely to find that the clay has many attractive electronic and optical properties as they continue to learn more about it.   

“We plan to keep pushing forward with our study of this new material in hopes of developing a truly scalable manufacturing process, improving quality and yield of MXene and exfoliating other MAX phases to produce new MXenes, which could not be synthesized using the previously used process—the possibilities seem endless. While it might look like just a bit of clay, I believe this discovery will reshape research in the field going forward.” Barsoum said.

This work was supported by the Ceramics Program of the National Science Foundation and by the U.S. Department of Energy’s FIRST Energy Frontier Research Center.

Source: http://drexel.edu/now/archive/2014/November/MXene-clay/

Related Articles:

 

 

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films - a conductive polymer MXene nanocomposite

A scanning electron microscopic image of MXene-polymer nanocomposite shows the polyvinyl alcohol filling in the layers of MXene to give the material its unique properties.Flexible new material, which the group has identified as a conductive polymer nanocomposite, is the latest expression of the ongoing research in Drexel’s Department of Materials Science and Engineering on a family of composite two-dimensional materials called MXenes

 

Flexible and conductive MXene films and nanocomposites with high capacitance

altTwo-dimensional transition metal carbides (MXenes) offer a quite unique combination of excellent mechanical properties, hydrophilic surfaces, and metallic conductivity.

 

 

 

 

News from MRC.ORG.UA

Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.

 
MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser

Development of tailored MXene PTT treatment targeting tumor cells. We demonstrate both low toxicity and good biocompatibility of this MXene in vitro, as well as a favorable safety profile based on the experiments in vivo.Presenting our recent collaborative research paper on  MXene use for PPT anticancer therapy, the biocompatibility of MXenes in vitro and in vivo studies:

Sergiy Kyrylenko, Oleksiy Gogotsi, Ivan Baginskiy, Vitalii Balitskyi, Veronika Zahorodna, Yevheniia Husak, Ilya Yanko, Mykolay Pernakov, Anton Roshchupkin, Mykola Lyndin, Bernhard B. Singer, Volodymyr Buranych, Alexander Pogrebnjak, Oksana Sulaieva, Oleksandr Solodovnyk, Yury Gogotsi, Maksym Pogorielov, MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl. Mater. Interfaces 2022, 14, 25, 28683–28696, https://doi.org/10.1021/acsami.2c08678

 
MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications

Presenting our collaborative paper on recen advances in MXene research and their potential applications:

Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials. 2021; 11(12):3412. https://doi.org/10.3390/nano11123412

 
MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

Presenting our joint research paper supported by CANBIOSE research project: and published in Biosensors and Bioelectronics: MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

 
If you want to help and support the purchase of aid consignments, shipping cost to Ukraine and delivery within Ukraine to the places in nee, please donate

Our volunteersBig thanks to all our friends, partners, volunteers for help and their tireless work! We continue to help our defenders and deliver military equipment, humanitarian aid, tactical medicine and special medical supplies to units of Ukrainian Army, territorial defense and hospitals on the front line!

 
Delivering help to Ukraine from the USA, Europe, and the rest of the world!

3.jpg - 197.81 KbOur organization in Kyiv, Materials Research Center, is well aware of the needs in Ukraine now. Together with our partners, fellow Ukrainian scientists, we have organized a warehouse in Lviv, where we collect cargos and distribute them throughout Ukraine, with detailed reports confirming the delivery to the final destination, including photos of the transfer. We have transportation that can pick cargo in Poland and deliver it through a green corridor for humanitarian cargos at the Polish-Ukrainian border. 
We are ready to respond promptly, as required by the situation in Ukraine. If there are individuals, foundations or volunteer organizations willing to send help to Ukraine from Europe or the United States, we are ready to accept it in our warehouses, make collection or individual parties according to your request and pass them on to those in need. All humanitarian aid, first aid, and protective gear will be delivered to the final destination.
Please contact Dr. Oleksiy Gogotsi, MRC Director: Tel / Viber / WhatsApp / Telegram / Signal: + 380 63 233 2443, Cell phone in the USA: +1 808 203 8092, e-mail: helpukraine@mrc.org.ua
Being currently on a business trip in Philadelphia, the United States, we can meet with you in person, if needed.

 
MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine

alt

MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine via volunteers. Specialized military first aid medical supplies were provided by the Special Forces Foundation, Green Berets Humanitarian Fund, USA

 
Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA to territorial defences, army unit and 2 hospitals

alt

Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA via the Kernel Volunteer Group for the Territorial Defense of Kyiv, Poltava, Vinnytsia, Voznesensk, as well as some military unit in Kyiv and Ternopil. Also part of medical supplies is transferred to hospitals in Krasnopillia in Sumy region and Voznesensk in Mykolaiv region

 

 
MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv

alt

MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv from the American Green Beret Humanitarian Fund for some military units.

 
BSU and LU parthers secondment visits to MRC an seminar discussion of ongoing research works under the NANO2DAY project at Materials Research Center, February 2022

alt

During the secondment visits of project partners from BSU and LU to MRC research works were performed and a seminar discussion of ongoing research works and obtained results was held under the NANO2DAY project.

 
Registration is now open for the upcoming MXene Certificate Course, February 7-11, 2022 from Professor Yury Gogotsi and his team, Drexel University, USA

altRegistration is now open for the upcoming MXene Certificate Course, February 7-11, 2022! This virtual certificate course will teach best practices for the synthesis (2 days), characterization (2 days), and electrochemical measurements of MXenes with a new lecture in the biomedical applications of MXenes (you may choose electrochemical measurements OR biomedical applications - 1 day).

 
Visiting resracher S. Stankevich performed secondment to MRC due to NANO2DAY project

altStanislav Stankevich, research assistant from Latvias University, Riga, Latvia, performed secondment visit to Materials Research Center, Kyiv, Ukraine, due to the MSCA RISE research project NANO2DAY working on project tasks related to MXene based composites. Dates of performed secondment visit November 17-December 16, 2021.