Paper in Science Magazine about exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions

This is an SEM of layered MXene along with added illustration of intercalated ions between layers. (Credit: Copyright Science, original image credit: M. Lukatskaya, Y. Dall'Agnese, E. Ren, Y. Gogotsi)

Rus На русском Eng In English

Science 27 September 2013: Vol. 341 no. 6153 pp. 1502-1505. DOI: 10.1126/science.1241488

Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide

Maria R. Lukatskaya1,2, Olha Mashtalir1,2, Chang E. Ren1,2,*, Yohan Dall’Agnese1,2,3,4, Patrick Rozier3, Pierre Louis Taberna3, Michael Naguib1,2, Patrice Simon3,4, Michel W. Barsoum1, Yury Gogotsi1,2

1Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.

2A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA.

3Université Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France.

4Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, France.

Supplementary Materials >>

Many batteries and capacitors make use of lithium intercalation as a means of storing and transporting charge. Lithium is commonly used because it offers the best energy density, but also because there are difficulties in storing larger cations without disrupting the crystal structure of the host. Lukatskaya et al. developed a series of MX compounds, where M represents a transition metal and X is carbon or nitrogen.The compound Ti3C2 forms a two dimensional layered structure, which is capable of accommodating a wide range of cations, including multivalent ones, either spontaneously or electrochemically.

The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. Researchers demonstrated the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na+, K+, NH4+, Mg2+, and Al3+, can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.

About three years ago, Dr. Michel W. Barsoum and Dr. Yury Gogotsi, professors in Drexel’s College of Engineering, discovered atomically thin, two-dimensional materials -similar to graphene- that have good electrical conductivity and a surface that is hydrophilic, or can hold liquids. They named these new materials “MXenes,” which hearkens to their genesis through the process of etching and exfoliating atomically thin layers of aluminum from layered carbide “MAX phases.”  The latter also discovered at Drexel about 15 years ago by Barsoum

Since then, the pair, and their team of materials scientists, have forged ahead in exploring the potential uses of MXenes. Their latest findings are reported in the Sept. 27 issue of Science. In their piece entitled “Cation Intercalation and High Volumetric Capacitance of Two-dimensional Titanium Carbide,”Gogotsi and Barsoum along with Drexel researchers Maria Lukatskaya, Olha Mashtalir, Chang Ren, Yohan Dall’Angese and Michael Naugib and Patrick Rozier, Pierre Louis Taberna and Dr. Patrice Simon from Université Paul Sabatier in France, explain how MXenes can accommodate various ions and molecules between their layers by a process known as intercalation.

Intercalation is sometimes a necessary step in order to exploit the unique properties of two-dimensional materials. For example, placing lithium ions between the MXene sheets makes them good candidates for use as anodes in lithium-ion batteries. The fact that MXenes can accommodate ions and molecules in this way is significant because it expands their ability to store energy.

“Currently, nine MXenes have been reported by our team, but there are likely many more that will be discovered - the MXene-and-ion combinations that have been tested to date are by no means an exhaustive demonstration of the material’s energy storage capabilities,” said Gogotsi, who is also director of the A.J. Drexel Nanotechnology Institute. “So even the impressive capacitances that we are seeing here are probably not the highest possible values to be achieved using MXenes. Intercalation of magnesium and aluminum ions that we observed may also pave the way to development of new kinds of metal ion batteries.”

Barsoum and Gogotsi’s report looks at intercalation of MXenes with a variety of ions, including lithium, sodium, magnesium, potassium, ammonium and aluminum ions. The resulting materials show high energy storage capacities and present another avenue of research in this branch of materials science.

“Two-dimensional, titanium carbide MXene electrodes show excellent volumetric super capacitance of up to 350 F/cm3 due to intercalation of cations between its layers,” Barsoum said. “This capacity is significantly higher than what is currently possible with porous carbon electrodes. In other words, we can now store more energy in smaller volumes, an important consideration as mobile devices get smaller and require more energy”

The researchers also reported on using MXene “paper” electrodes, instead of conventional rolled powder electrodes with a polymer binder. The flexibility of this paper suggests MXenes may also be useful in flexible and wearable energy storage devices, which is another major area of ongoing research at Drexel in collaboration with Professor Genevieve Dion’s Shima Seiki Haute Technology Laboratory.

Source: www.esciencenews.com

RELATED ITEMS:

Article about Two-Dimensional Transition Metal Carbides in ACS Nano honored for most valuable contribution to ceramics

The research reported in this paper is an exciting advance in this new family of materials for which the applications are just beginning to be envisioned

 

News from MRC.ORG.UA

Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.

 
MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser

Development of tailored MXene PTT treatment targeting tumor cells. We demonstrate both low toxicity and good biocompatibility of this MXene in vitro, as well as a favorable safety profile based on the experiments in vivo.Presenting our recent collaborative research paper on  MXene use for PPT anticancer therapy, the biocompatibility of MXenes in vitro and in vivo studies:

Sergiy Kyrylenko, Oleksiy Gogotsi, Ivan Baginskiy, Vitalii Balitskyi, Veronika Zahorodna, Yevheniia Husak, Ilya Yanko, Mykolay Pernakov, Anton Roshchupkin, Mykola Lyndin, Bernhard B. Singer, Volodymyr Buranych, Alexander Pogrebnjak, Oksana Sulaieva, Oleksandr Solodovnyk, Yury Gogotsi, Maksym Pogorielov, MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl. Mater. Interfaces 2022, 14, 25, 28683–28696, https://doi.org/10.1021/acsami.2c08678

 
MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications

Presenting our collaborative paper on recen advances in MXene research and their potential applications:

Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials. 2021; 11(12):3412. https://doi.org/10.3390/nano11123412

 
MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

Presenting our joint research paper supported by CANBIOSE research project: and published in Biosensors and Bioelectronics: MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor

 
If you want to help and support the purchase of aid consignments, shipping cost to Ukraine and delivery within Ukraine to the places in nee, please donate

Our volunteersBig thanks to all our friends, partners, volunteers for help and their tireless work! We continue to help our defenders and deliver military equipment, humanitarian aid, tactical medicine and special medical supplies to units of Ukrainian Army, territorial defense and hospitals on the front line!

 
Delivering help to Ukraine from the USA, Europe, and the rest of the world!

3.jpg - 197.81 KbOur organization in Kyiv, Materials Research Center, is well aware of the needs in Ukraine now. Together with our partners, fellow Ukrainian scientists, we have organized a warehouse in Lviv, where we collect cargos and distribute them throughout Ukraine, with detailed reports confirming the delivery to the final destination, including photos of the transfer. We have transportation that can pick cargo in Poland and deliver it through a green corridor for humanitarian cargos at the Polish-Ukrainian border. 
We are ready to respond promptly, as required by the situation in Ukraine. If there are individuals, foundations or volunteer organizations willing to send help to Ukraine from Europe or the United States, we are ready to accept it in our warehouses, make collection or individual parties according to your request and pass them on to those in need. All humanitarian aid, first aid, and protective gear will be delivered to the final destination.
Please contact Dr. Oleksiy Gogotsi, MRC Director: Tel / Viber / WhatsApp / Telegram / Signal: + 380 63 233 2443, Cell phone in the USA: +1 808 203 8092, e-mail: helpukraine@mrc.org.ua
Being currently on a business trip in Philadelphia, the United States, we can meet with you in person, if needed.

 
MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine

alt

MRC Ukraine Foundation. Providing of military first aid medicine for the Special Operations Forces of the Armed Forces of Ukraine via volunteers. Specialized military first aid medical supplies were provided by the Special Forces Foundation, Green Berets Humanitarian Fund, USA

 
Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA to territorial defences, army unit and 2 hospitals

alt

Delivering military first aid medicine from the Special Forces Foundation Green Beret Humanitarian Fund (GBHF) from the USA via the Kernel Volunteer Group for the Territorial Defense of Kyiv, Poltava, Vinnytsia, Voznesensk, as well as some military unit in Kyiv and Ternopil. Also part of medical supplies is transferred to hospitals in Krasnopillia in Sumy region and Voznesensk in Mykolaiv region

 

 
MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv

alt

MRC Ukraine Foundation. Transfer of military first aid medicine at our hub in Lviv from the American Green Beret Humanitarian Fund for some military units.

 
BSU and LU parthers secondment visits to MRC an seminar discussion of ongoing research works under the NANO2DAY project at Materials Research Center, February 2022

alt

During the secondment visits of project partners from BSU and LU to MRC research works were performed and a seminar discussion of ongoing research works and obtained results was held under the NANO2DAY project.

 
Registration is now open for the upcoming MXene Certificate Course, February 7-11, 2022 from Professor Yury Gogotsi and his team, Drexel University, USA

altRegistration is now open for the upcoming MXene Certificate Course, February 7-11, 2022! This virtual certificate course will teach best practices for the synthesis (2 days), characterization (2 days), and electrochemical measurements of MXenes with a new lecture in the biomedical applications of MXenes (you may choose electrochemical measurements OR biomedical applications - 1 day).

 
Visiting resracher S. Stankevich performed secondment to MRC due to NANO2DAY project

altStanislav Stankevich, research assistant from Latvias University, Riga, Latvia, performed secondment visit to Materials Research Center, Kyiv, Ukraine, due to the MSCA RISE research project NANO2DAY working on project tasks related to MXene based composites. Dates of performed secondment visit November 17-December 16, 2021.