Scale-up of MXene Synthesis
O. Gogtosi ab, V. Zahorodna ab, Serhienko A. a, I. Hrysko a, Y. Zozulya a, V. Balitskyi a, M. Seredych c, B. Anasori c, Y. Gogotsi c
a Materials Research Center, Kiev 03680, Ukraine
b National Metallurgical Academy of Ukraine, Dnipro 49600, Ukraine
c A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
Corresponding author: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
Abstract
The family of two-dimensional (2D) transition metal carbides and nitrides, MXenes, has been expanding rapidly since the discovery of Ti3C2 MXene in 2011 [1]. More than 20 different MXenes have been synthesized, and the structure and properties of numerous other MXenes have been predicted using density functional theory calculations [2].
Two-dimensional (2D) materials with a thickness of a few nanometers or less can be used as single sheets due to their unique properties or as building blocks, to assemble a variety of structures. MXenes properties can be tunable for a large variety of applications [3]that directly lead to their use for electromagnetic shielding [4], transparent conductors, light-to-heat energy conversion, new advanced lasers and photothermal therapy.
Synthesis of MXene typically begins with etching the A-element atomic layers (for example, aluminum) in a MAX phase (for example, Ti3AlC2) with HF solution and/or a mixture of fluoride salts and acids at room temperature or slightly higher temperature. After the etching is finished (complete removal of the A-element layers), washing must be applied to remove residual acid and reaction products (salts) and achieve a safe pH (∼6). After the pH is increased to ∼6, and eventual intercalation of large organic molecules and subsequent delamination completed, the multilayered MXene flakes or single nanosheets can be collected via vacuum-assisted filtration and then dried in vacuum [5].
MXenes can be deposited form solution by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Synthesis conditions used to produce MXenes influence the resulting properties and thus are directly related to the performance of MXenes in their applications [5]. In the laboratory, researchers synthesize MXene in gram quantities, and it is very difficult to repeat the synthesis conditions in order to obtain a material with the same repeatable properties.
For scaling up the laboratory process and to obtain material in larger quantities (up to 200 g per batch) of good quality with repeatable properties, a pilot laboratory line was developed [5]), which allows us to control the etching process and adjust its basic parameters - temperature, mixing speed, recording and storing all necessary data for analysis or to repeat the conditions during subsequent syntheses to obtain a MXene with repeatable properties. In addition, since the acidic etching process is accompanied by the release of heat, a specially developed sealed reactor allows safe and reliable synthesis. The computer control system provides the desired precursor feed rate and the optimal synthesis temperature profile [6].
References
[1] Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. M. Naguib, et al., Advanced Materials, 23, 4248 (2011)
[2] Synthesis and Biomedical Applications of 2D Carbides (MXenes). Gogotsi, O. G., Zahorodna, V. V., Balitskiy, V. Y., Zozulya, Y. I., Gogotsi, H. G., Brodnikovskiy, M. P., Gubynskyi, M. V., Fedorov, S. S., Alhabeb, M., Meng, F., Anasori B., Gogotsi, Y. Abstracts Book of 5th International Conference, Nanobiophysics: Fundamental and Applied Aspects, October 2-5, 2017, Kharkiv, Ukraine
[3] Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. J. Xuan, et al., Angew. Chem. Int. Ed. 55, 1 – 7 (2016)
[4] F. Shahzad, M. Alhabeb, C.B. Hatter, B, Anasori, S.M. Hong, C. M. Koo, Y. Gogotsi, Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes), Science, 353 (6304) 1137-1140 (2016)
[5] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene), Chemistry of Materials, 29 (18) 7633-7644 (2017)
[6] O.O. Honcharuk, V.Y. Balitskiy, R.V. Voron, M.P.Brodnikovskiy, O.G. Gogotsi, V.V. Zahorodna, Y.I. Zozulya, M. Alhabeeb, B. Anasori, K. Malesky, Y. Gogotsi. Synthesis and Optical Properties of 2D Carbide MXenes, Book of Abstracts for 11th International Scientific-Technical Conference "Composite Materials", National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", April 2018, рр.118-120. UDC 542;546;62.
Acknowledgement. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777810.
2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties
To contact MXene supplier Carbon-Ukraine company (Y-Carbon ltd) or to get a quota with a price on MXene or MAX phase
2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, September 09-14, 2018 |
At the poster session of the conference Oleksiy Gogotsi presented two poster presentations on advanced nanomaterials for different applications, prepared with colleagues from Drexel University, USA, and Jilin University, China |