Центр Материаловедения занимается исследованиями, разработкой и производством материалов для суперконденсаторов.
Мы производим широкий спектр углеродных наноматериалов с регулируемой пористостью - производим мезопористый, макропористый, микропористый и нанопористый углеродный материал. Наши специалисты помогут подобрать вам материал для суперконденсаторов с необходимыми параметрами и свойствами.
Суперконденсаторы (или электрохимические конденсаторы) хранят энергию способом адсорбции ионов (благодаря электрохимическому двойному слою) или благодаря быстрой окислительно-восстановительной реакции на поверхности (псевдоконденсаторы). Суперконденсаторы могут быть дополнительным элементом или полностью заменять аккумуляторы в устройстве накопления электрической энергии, в случае, когда не требуется мощная подача и поглощение энергии. В последнее время произошел заметный рост производительности благодаря достижениям в понимании непосредственно механизмов и процессов хранения заряда, а также благодаря развитию новейших наноструктурных материалов, а именно различных углеродных наноматериалов.
Изменения климата и ограниченность ископаемых топливных ресурсов приводят общество к необходимости перехода на устойчивые возобновляемые источники энергии. Как результат, мы наблюдаем увеличение производства возобновляемой энергии солнца и ветра, а также развитие электрических транспортных средств или гибридных электромобилей с низким уровнем выбросов CO2. Но солнце не светит ночью, а погода не всегда ветрена, и устройства хранения энергии начинают играть более значительную роль в нашей жизни.
В авангарде это электрические системы аккумулирования энергии, такие как аккумуляторные батареи и электрохимические конденсаторы (ECS), но они требуют значительного усовершенствования для удовлетворения возрастающих энергетических потребностей будущих устройств - от портативной электроники и гибридных автомобилей до большого промышленного оборудования- путем разработки новых материалов и продвижения на пути к пониманию электрохимических интерфейсов на наноуровне.
Литий-ионные батареи, хотя и имеют высокую стоимость и медленную подачу энергии, но и до сегодня остаются самыми мощными аккумуляторами ввиду большой плотности энергии. Но суперконденсаторы активно совершенствуются и в отличие от литий-ионных батарей, имеют большое преимущество – они обеспечивают мгновенную подачу энергии и большое количество циклов заряд-разряд.
Они играют важную роль в дополнении или замене батарей в области хранения энергии, например, в качестве источников бесперебойного питания (резервные запасы, используемые для защиты от сбоев питания) и выравнивания напряжения.
Можно выделить несколько типов электрохимических конденсаторов в зависимости от механизма накопления энергии и используемого в суперконденсаторе активного материала - электрохимические конденсаторы с двойным слоем, псевдоконденсаторы и гибридные конденсаторы.
Основным рынком сбыта электрохимических конденсаторов с двойным слоем считается транспортная отрасль, включая гибридный электроприводный транспорт, а также поезда метрополитена, трамваи. Но до сих пор в этой отрасли существуют разные мнения по поводу использования высокомощных литий-ионных батарей вместо электрохимических конденсаторов (и наоборот). Но не следует рассматривать литий-ионные батареи и электрохимические конденсаторы как конкурентные, поскольку они имеют разные характеристики и механизмы хранения энергии. Доступность и подача накопленного заряда всегда будет более быстрой для суперконденсаторов (благодаря большой поверхности для хранения энергии), чем для литий-ионных аккумуляторов (хранение в обьеме), хотя у последних - больше запас хранимой энергии.
Уменьшение цены на углеродные материалы для электрохимических конденсаторов, включая CDC и активированные углероды, может обеспечить их широкое производство и использование. Разработка и производство таких материалов для суперконденсаторов как нанопористый углерод с размером пор для захвата ионов электролита с точностью до ангстрем, углеродные нанотрубки для гибких и печатных устройств с коротким временем оклика, а также наночастицы оксидов переходных металлов и нитридов для псевдоконденсаторов являются последними достижениями в данной области суперконденсаторов.
Электрохимические конденсаторы с двойным слоем
В электрохимических конденсаторах с двойным электрическим слоем используется активный материал на основе углерода с высокой площадью поверхности. Электроды выполняют, как правило, путём использования пористых материалов, таких, как активированный уголь или вспененные металлы. Общая площадь поверхности, даже в тонком слое такого материала, во много раз больше, чем в традиционных материалах, таких как алюминий, что позволило хранить заряд в любом объёме. Для этого применения графитовый углерод соответствует всем требованиям - он обладает высокой проводимостью, электрохимической стабильностью и открытой пористостью. Также в качестве активного материала для электрохимических конденсаторов с двойным электрическим слоем могут применяться активированный углерод, углерод, получаемый из карбидов (CDC), углеродные ткани, углеродные волокна, углеродные нанотрубки, углеродные нанолуковицы, нанорожки. Но наиболее распространен активированный углерод ввиду своей большой площади поверхности и невысокой стоимости.Активированные угли получают из богатых углеродом органических прекурсоров путем карбонизации (термообработки) в инертной атмосфере с последующим селективным окислением в CO2, водяным паром воды или раствором КОН, чтобы увеличить площадь поверхности и объем пор. В качестве прекурсоров обычно используются натуральные материалы, такие как скорлупа кокосовых орехов, дерево, смолы, угли, или синтетические материалы, такие как полимеры. Пористая сеть в углеродном материале производится после активации; в зернах углерода могут быть созданы микропоры (<2 нм), мезопоры (2-50 нм) и макропоры (> 50 нм).
Углеродные материалы, используемые в конденсаторах с двойным электрическим слоем обычно предварительно обрабатываются для удаления влаги и большой части функциональных групп, присутствующих на поверхности углерода для повышения стабильности при циклировании, поскольку они могут вызвать увядание емкости и старение конденсатора. Высокая емкость наблюдалась у мезопористого углеродного материала содержащего маленькие микропоры.
Однако наиболее убедительные результаты увеличения емкости в порах размером меньше, чем ион, были получены во время экспериментов, когда в качестве активного материала использовались углероды, полученные из карбидов (CDCs). Это пористый углеродный материал, полученный путем экстракции металлов из карбидов (TiC, SiC и др.) путем травления в галогенов при повышенных температурах. TiC + 2Cl2 → TiCl4 + C
В этой реакции, Ti выщелачивают из TiC, а атомы углерода самообразуют аморфную или неупорядоченную структуру с размером пор, которые могут быть доработаны путем регулирования температуры хлорирования и других параметров процесса.
Поскольку образцы CDC были исключительно микропористые, то увеличение емкости за счет субнанометрических пор четко показыавает роль микропор. Кроме того, гравиметрические и объемные емкости, достигнутые при использовании CDC составили соответственно показатель на 50% и 80% выше, чем у обычного активированного углерода. Данные материалы демонстрируют высокий энергетический потенциал для дальнейшего применения в суперконденсаторах.
Псевдоемкостные конденсаторы
В основе некоторых электрохимических конденсаторов лежит механизм быстрых обратимых окислительно-восстановительных реакций, которые происходят на поверхности активного материала – так называемые псевдоемкостные реакции. Они имеют высокую удельную емкость. Для псевдоконденсаторов в качестве активного материала используются оксиды переходных металлов (RuO2, Fe3O4, MnO2 или Mo20), а также испытывались электропроводящие полимеры – полианилин, полипиррол, политиофен и их производные. Недостатком проводящих полимеров при использовании в качестве активного материала, является ограниченная стабильности во время циклирования, что снижает начальную производительность. Исследования проводящих полимеров для суперконденсаторов в настоящее время направлены на их применение в гибридных системах.
Учитывая, что наноматериалы помогли улучшить литий-ионные батареи, то не удивительно, что наноструктуры имели такое же влияние на электрохимические конденсаторы ECS, поскольку псевдоконденсаторы хранят заряд в первых нескольких нанометров поверхности, тем самым уменьшая размер частиц используемого активного материала. Синтезированные тонкие слои MnO2 и RuO2 в нанометровом мастабе были нанесены на различные подложки – металлические коллекторы, углеродные нанотрубки или активированный углерод.
Синтез тонких пленок или емкостных материалов с большой площадью поверхности, покрытых наноразмерным псевдоемкостным активным веществом (как в примерах представленных на рисуске выше) позволяет увеличить удельную плотность энергии и конкурировать с электрохимическими конденсаторами с двойным слоем на основе углерода EDLC. Но, к сожалению, на данном этапе высокая стоимость производства таких сложных наноструктурных материалов пока ограничивает их широкое применение в компактных электронных устройствах.
Гибридные суперконденсаторы
Гибридные конденсаторы объединяют емкостный или псевдо-емкостный электрод с электродом аккумуляторной батареи, и таким образом сочетают свойства и конденсатора, и батареи.
Гибридные системы могут выступить заманчивой альтернативой традиционным псевдоконденсаторам (pseudocapacitors) или электрохимическим конденсаторам двойного слоя (EDLCs) путем объединения в одной ячейке электрода как источника энергии и электрода – источника питания.
Соответствующая комбинация электродов может даже увеличить напряжение элемента, тем самым увеличив удельную мощность и плотность энергии. В настоящее время существует два разных подхода к гибридным системам: (I) комбинация псевдо-емкостных оксидов металлов с емкостным углеродным электродом, и (II)сочетание электрода из вставок лития с емкостным углеродным электродом. Эти системы могут представлять особый интерес в приложениях, где требуется высокая мощность и средняя длительность жизненного цикла.
Токоприемники
Поскольку электрохимические конденсаторы явлются силовыми устройствами, их внутреннее сопротивление должно соблюдаться на низком уровне. Следует обратить особое внимание на контактный импеданс (сопротивление) между активной пленкой и токоприемником. В электрохимических конденсаторах, разработанных для органических электролитов используется обработанная алюминиевая фольга или сетевые токоприемники. Привлекательным материалом для токоприемников является углерод в виде высокопроводящих нанотрубок или листы графена. Эти материалы не поддаются коррозии в водных электролитах и являются очень гибкими.
В статье использованы материалы и иллюстрации из статьи Materials for electrochemical capacitors,P Simon, Y Gogotsi, Nature materials 7 (11), 2008, р.845-854