Разаботка, исследование и производство материалов для суперконденсаторов - электрохимических конденсаторов с двойным слоем, псевдоконденсаторов и гибридных конденсаторов

Центр Материаловедения занимается исследованиями, разработкой и производством материалов для суперконденсаторов.

Мы производим широкий спектр углеродных наноматериалов с регулируемой пористостью - производим мезопористый, макропористый, микропористый и нанопористый углеродный материал. Наши специалисты помогут подобрать вам материал для суперконденсаторов с необходимыми параметрами и свойствами.
Суперконденсаторы (или электрохимические конденсаторы) хранят энергию способом адсорбции ионов (благодаря электрохимическому двойному слою) или благодаря быстрой окислительно-восстановительной реакции на поверхности (псевдоконденсаторы). Суперконденсаторы могут быть дополнительным элементом или полностью заменять аккумуляторы в устройстве накопления электрической энергии, в случае, когда не требуется мощная подача и поглощение энергии. В последнее время произошел заметный рост производительности благодаря достижениям в понимании непосредственно механизмов и процессов хранения заряда, а также благодаря развитию новейших наноструктурных материалов, а именно различных углеродных наноматериалов.

Изменения климата и ограниченность ископаемых топливных ресурсов приводят общество к необходимости перехода на устойчивые возобновляемые источники энергии.  Как результат, мы наблюдаем увеличение производства возобновляемой энергии солнца и ветра, а также развитие электрических транспортных средств или гибридных электромобилей с низким уровнем выбросов CO2. Но солнце не светит ночью, а погода не всегда ветрена, и устройства хранения энергии начинают играть более значительную роль в нашей жизни.
В авангарде это электрические системы аккумулирования энергии, такие как аккумуляторные батареи и электрохимические конденсаторы (ECS), но они требуют значительного усовершенствования для удовлетворения возрастающих энергетических потребностей будущих устройств - от портативной электроники и гибридных автомобилей до большого промышленного оборудования- путем разработки новых материалов и продвижения на пути к пониманию электрохимических интерфейсов на наноуровне.
Литий-ионные батареи, хотя и имеют высокую стоимость и медленную подачу энергии, но и до сегодня остаются самыми мощными аккумуляторами ввиду большой плотности энергии. Но суперконденсаторы активно совершенствуются и в отличие от литий-ионных батарей, имеют большое преимущество – они обеспечивают мгновенную подачу энергии и большое количество циклов заряд-разряд.
Они играют важную роль в дополнении или замене батарей в области хранения энергии, например, в качестве источников бесперебойного питания (резервные запасы, используемые для защиты от сбоев питания) и выравнивания напряжения.
Можно выделить несколько типов электрохимических конденсаторов в зависимости от механизма накопления энергии и используемого в суперконденсаторе активного материала - электрохимические конденсаторы с двойным слоем, псевдоконденсаторы и гибридные конденсаторы.

Основным рынком сбыта электрохимических конденсаторов с двойным слоем считается транспортная отрасль, включая гибридный электроприводный транспорт, а также поезда метрополитена, трамваи. Но до сих пор в этой отрасли существуют разные мнения по поводу использования высокомощных литий-ионных батарей вместо электрохимических конденсаторов (и наоборот). Но не следует рассматривать литий-ионные батареи и электрохимические конденсаторы как конкурентные, поскольку они имеют разные характеристики и механизмы хранения энергии. Доступность и подача накопленного заряда всегда будет более быстрой для суперконденсаторов (благодаря большой поверхности для хранения энергии), чем для литий-ионных аккумуляторов (хранение в обьеме), хотя у последних -  больше запас хранимой энергии.

Уменьшение цены на углеродные материалы для электрохимических конденсаторов, включая CDC и активированные углероды, может обеспечить их широкое производство и использование.  Разработка и производство таких материалов для суперконденсаторов как нанопористый углерод с размером пор для захвата ионов электролита с точностью до ангстрем, углеродные нанотрубки для гибких и печатных устройств с коротким временем оклика, а также наночастицы оксидов переходных металлов и нитридов для псевдоконденсаторов являются последними достижениями в данной области суперконденсаторов.

Электрохимические конденсаторы с двойным слоем

Электрохимические конденсаторы с двойным электрическим слоемВ электрохимических конденсаторах с двойным электрическим слоем используется активный материал на основе углерода с высокой площадью поверхности. Электроды выполняют, как правило, путём использования пористых материалов, таких, как активированный уголь или вспененные металлы. Общая площадь поверхности, даже в тонком слое такого материала, во много раз больше, чем в традиционных материалах, таких как алюминий, что позволило хранить заряд в любом объёме. Для этого применения графитовый углерод соответствует всем требованиям -  он обладает высокой проводимостью, электрохимической стабильностью и открытой пористостью. Также в качестве активного материала для электрохимических конденсаторов с двойным электрическим слоем могут применяться активированный углерод, углерод, получаемый из карбидов (CDC), углеродные ткани, углеродные волокна, углеродные нанотрубки, углеродные нанолуковицы, нанорожки. Но наиболее распространен активированный углерод ввиду своей большой площади поверхности и невысокой стоимости.Активированные угли получают из богатых углеродом органических прекурсоров путем карбонизации (термообработки) в инертной атмосфере с последующим селективным окислением в CO2, водяным паром воды или раствором КОН, чтобы увеличить площадь поверхности и объем пор. В качестве прекурсоров обычно используются натуральные материалы, такие как скорлупа кокосовых орехов, дерево, смолы, угли, или синтетические материалы, такие как полимеры.  Пористая сеть в углеродном материале производится после активации; в зернах углерода могут быть созданы микропоры (<2 нм), мезопоры (2-50 нм) и макропоры (> 50 нм).
Углеродные структуры, используемые в качестве активных материалов для двухслойных конденсаторов.Углеродные материалы, используемые в конденсаторах с двойным электрическим слоем обычно предварительно обрабатываются для удаления влаги и большой части функциональных групп, присутствующих на поверхности углерода для повышения стабильности при циклировании, поскольку они могут вызвать увядание емкости и старение конденсатора. Высокая емкость наблюдалась у мезопористого углеродного материала содержащего маленькие микропоры.
Однако наиболее убедительные результаты увеличения емкости в порах размером меньше, чем ион, были получены во время экспериментов, когда в качестве активного материала использовались углероды, полученные из карбидов (CDCs). Это пористый углеродный материал, полученный путем экстракции металлов из карбидов (TiC, SiC и др.) путем травления в галогенов при повышенных температурах. TiC + 2Cl2 → TiCl4 + C
В этой реакции, Ti выщелачивают из TiC, а атомы углерода самообразуют аморфную или неупорядоченную структуру с размером пор, которые могут быть доработаны путем регулирования температуры хлорирования и других параметров процесса.

Поскольку образцы CDC были исключительно  микропористые, то увеличение емкости за счет субнанометрических пор четко показыавает роль микропор. Кроме того, гравиметрические и объемные емкости, достигнутые при использовании CDC составили соответственно показатель на 50% и 80% выше, чем у обычного активированного углерода. Данные материалы демонстрируют высокий энергетический потенциал для дальнейшего применения в суперконденсаторах.

Псевдоемкостные конденсаторы

В основе некоторых электрохимических конденсаторов лежит механизм быстрых обратимых окислительно-восстановительных реакций, которые происходят на поверхности активного материала – так называемые псевдоемкостные реакции. Они имеют высокую удельную емкость. Для псевдоконденсаторов в качестве активного материала используются оксиды переходных металлов (RuO2, Fe3O4, MnO2 или Mo20), а также испытывались электропроводящие полимеры – полианилин, полипиррол, политиофен и их производные. Недостатком проводящих полимеров при использовании в качестве активного материала, является ограниченная стабильности во время циклирования, что снижает начальную производительность. Исследования проводящих полимеров для суперконденсаторов в настоящее время направлены на их применение в гибридных системах.
Учитывая, что наноматериалы помогли улучшить литий-ионные батареи, то не удивительно, что наноструктуры имели такое же влияние на электрохимические конденсаторы ECS, поскольку псевдоконденсаторы хранят заряд в первых нескольких нанометров поверхности, тем самым уменьшая размер частиц используемого активного материала. Синтезированные тонкие слои MnO2 и RuO2 в нанометровом мастабе были нанесены на различные подложки – металлические коллекторы, углеродные нанотрубки или активированный углерод.
Возможные способы улучшения удельной мощности и плотности энергии для электрохимических конденсаторов. a, b, зернистый активированный углерод, покрытый слоем псевдоемкостных материалов; c и d - полученные отложения псевдоемкостных материалов (с) на хорошо упорядоченной большой площади углеродных нанотрубок(d)Синтез тонких пленок или емкостных материалов с большой площадью поверхности, покрытых наноразмерным псевдоемкостным активным веществом (как в примерах представленных на рисуске выше) позволяет увеличить удельную плотность энергии и конкурировать с электрохимическими конденсаторами с двойным слоем на основе углерода EDLC. Но, к сожалению, на данном этапе высокая стоимость производства таких сложных наноструктурных материалов пока ограничивает их широкое применение в компактных электронных устройствах.

Гибридные суперконденсаторы

Гибридные конденсаторы объединяют емкостный или псевдо-емкостный электрод с электродом аккумуляторной батареи, и таким образом сочетают свойства и конденсатора, и  батареи.
Гибридные системы могут выступить заманчивой альтернативой традиционным псевдоконденсаторам (pseudocapacitors) или электрохимическим конденсаторам двойного слоя (EDLCs) путем объединения в одной ячейке электрода как источника энергии и электрода – источника питания.
Соответствующая комбинация электродов может даже увеличить напряжение элемента, тем самым увеличив удельную мощность и плотность энергии. В настоящее время существует два разных подхода к гибридным системам: (I) комбинация псевдо-емкостных оксидов металлов с емкостным углеродным электродом, и (II)сочетание электрода из вставок лития с емкостным углеродным электродом. Эти системы могут представлять особый интерес в приложениях, где требуется высокая мощность и средняя длительность жизненного цикла.

Токоприемники

 Поскольку электрохимические конденсаторы явлются силовыми устройствами, их внутреннее сопротивление должно соблюдаться на низком уровне. Следует обратить особое внимание на контактный импеданс (сопротивление) между активной пленкой и токоприемником. В электрохимических конденсаторах, разработанных для органических электролитов используется обработанная алюминиевая фольга или сетевые токоприемники. Привлекательным материалом для токоприемников является углерод в виде  высокопроводящих нанотрубок или листы графена. Эти материалы не поддаются коррозии в водных электролитах и являются очень гибкими.

В статье использованы материалы и иллюстрации из статьи Materials for electrochemical capacitors,P Simon, Y Gogotsi, Nature materials 7 (11), 2008, р.845-854

 

НОВОСТИ НАУКИ И НАНОТЕХНОЛОГИИ

ДВАДЦАТЬ ТРЕТЬЯ ЕЖЕГОДНАЯ КОНФЕРЕНЦИЯ - YUCOMAT 2022 ДВЕНАДЦАТАЯ ВСЕМИРНАЯ КОНФЕРЕНЦИЯ КРУГЛЫЙ СТОЛ ПО СПЕКАНИЮ - XII WRTCS 2022 Герцег-Нови, 29 августа – 2 сентября 2022 г.

alt

Наши коллеги и партнеры представили наши совместные работы на конференции Yucomat 2022- на Симпозиуме по биоматериалам и два совместных постера на постерной сессии конференции.

 
Исследователи из MRC приняли участие в междкнародной конференции по максенам - MXene Conferene 2022

second MXene COnference 2022, Drexel University, USA

Члены команды MRC доктор Алексей Гогоци, Вероника Загородная, доктор Ирина Рослик посетили международную конференцию MXene Confrence 2022, которая проходила 1-3 августа 2022 г., в Университете Дрекселя, Филадельфия, США. Эта 2-я международная конференция по  максенам MXene біла поствящена крупным открытиям в оласти наноматериалов  MXene, включая их рекордную электропроводность,  свойства электромагитной защиты,  электрохимическую емкость, преобразование света в тепло и другие свойства в перспективе.

 
Якщо маєте бажання допомогти та підтримати коштами закупку партій допомоги, витрати на відправки в Україну та доставки по Україні на місця

altДякуємо всім друзям, партнерам, волонтерам за допомогу та вашу невтомну роботу! Продовжуємо допомагати нашим захисникам та доправляємо військове спорядження, гуманітарну допомогу, польову медицину та спеціальні медицині засоби до військових підрозділів, територіальної оборони, лікарень на передовій!

 
Допомога Україні - з США, Европи, всього світу!

3.jpg - 197.81 Kb Якщо є люди, фонди та волонтери, які хочуть відправити допомогу в Україну з країн Європи або США, ми готові приймати на наші склади, складати збірні чи окремі партії та під замовлення і прицільно передавати їх далі кому вона необхідна. На всю гуманітарну допомогу буде надано звітність про передачу, фото.

Наша організація в Києві називається Materials Research Center (ТОВ Центр матеріалознавства). Я, Гогоці Олексій Георгійович (Oleksiy Gogotsi), знаходжуся зараз у США у відрядженні в районі Філадельфії, маю можливість вирішувати та координувати всі питання з організації доставки гуманітарної допомоги та захисної амуніції і обладнання в Польщу із подальшим вивозом через зелений коридор на наш склад у Львові, або прямо до нашого складу у Львові, та далі на місця, де цього терміново потребують. Є дуже термінові запити про допомогу від бригад ЗСУ, територіальної оборони та відділів Нацполіції України, медиків.

Будь ласка, контактуйте, також маю можливість під'їхати до Вас.

Тел /Viber/WhatsApp/Telegram/Signal: + 380632332443, Телефон в США +18082038092

e-mail: helpukraine@mrc.org.ua

 
MRC Ukraine Foundation. Передача волонтерам засобів польової медицини для військових Сил Спеціальних Операцій Збройних Сил України

alt

MRC Ukraine Foundation. Передача волонтерам засобів польової медицини для військових Сил Спеціальних Операцій Збройних Сил України. Спеціалізовані медичні засоби передані від Фундації Сил Спецпризначення та гуманітарного фонду Зелених Беретів, США.

 

 
MRC Ukraine Foundation. Передаємо засоби польової медицини від гуманітарного фонду Зелених Беретів із США волонтерській групі Кернел для ТРО різних міст, військової частини та лікарень

alt

MRC Ukraine Foundation. Передаємо засоби польової медицини від гуманітарного фонду Зелених Беретів із США волонтерській групі Кернел для Територіальної оборони Києва, Полтави, Вінниці, Вознесенська, а також окремих військових частин в Києві та Тернополі. Також частина медичних засобів передана до Краснопільської лікарні в Сумській області та лікарні міста Вознесенськ Миколаївської області.

 

 
MRC Ukraine Foundation. Передача з нашого складу у Львові польової медицини для окремого військового підрозділу

alt

MRC Ukraine Foundation. Передача з нашого складу у Львові польової медицини для окремого військового підрозділу від американського гуманітарного фонду Green Beret Humanitarian Fund

 
Без ума от максенов MXenes. Спустя десятилетие после открытия в Дрекселе двухмерные материалы подталкивают инженеров и ученых к переосмыслению границ возможного.

Профессор Юрий ГогоциГоворят, что большие вещи приходят в маленьких посылках. И в течение последнего десятилетия MXenes - двумерные соединения углерода и переходных металлов, впервые разработанные в Дрекселе - подтверждали эту точку зрения, стимулируя инновации во многих областях науки. Теперь новое партнерство открывает возможности для помощи MXenes в спасении жизней.

 
В Сумском Государственном Университете состоится лекция профессора Юрия Гогоци «От открытия новых (нано) материалов к передовым технологиям или приключения украинца в Америке», 27 мая 2021 г. в 16:00, Конгресс-Центр СумГУ

Профессор Юрий Гогоци, директор Института наноматериалов имени А. Дж. Дрекселя, Университет ДрекселяСовместно с этой лекцией профессор Юрий Гогоци получит звание почетного доктора Сумского государственного университета.Это уникальная возможность приобщиться к науке мирового уровня, окунуться в мир наноматериалов и проследить научный путь нашего соотечественника. Лекция пройдет в 16:00, 27 мая 2021 года в Конгресс-Центре СумГУ, зал Сингапур 220, в г. Сумы.

 
Использование двумерного материала максена MXene, в качестве фильтра в носимом устройстве искусственной почки

MXene порыМатериал MXene, который был впервые получен учеными из Университета Дрекселя в 2011 году, - это еще один шаг к тому, чтобы изменить жизнь людей, страдающих болезней почек на последней стадиии.  Nephria Bio, Inc., спин-офф южнокорейской компании по производству медицинского оборудования EOFlow Co., Ltd., расположенной в США, подписала лицензионное соглашение с университетом на использование двумерного материала максена MXene, в качестве фильтра в носимом устройстве искусственной почки, которое они разрабатывают. Эта технология может позволить многим из миллионов людей всем мире, страдающих заболеванием почек последней стадии, более свободно передвигаться, не тратя часы каждую неделю на привязанность к большим диализным аппаратам.

 
Покрытие из максена MXene может защищать носимые устройства от электромагнитных помех

mxene-emi-fabric

Группа ученых из Университета Дрекселя (Филадельфия, США) опубликовала многообещающие результаты исследования, которые показывают, что ткань, покрытая высокопроводящим двумерным материалом под названием MXene, очень эффективно блокирует электромагнитные волны и потенциально опасное излучение. Эта работа может существенно повлиять на промышленное производство электронного текстиля, становясь привлекательной альтернативой используемым в настоящее время металлическим проводящим красителям, и позволяя широко внедрять бесшовно интегрированные текстильные устройства со значительными улучшенные характеристики экранирования электромагнитных помех.

 
Интервью профессора Юрия Гогоци о его исследованиях, разработках, поисках вдохновения, финансирования и контактов в научном мире

Профессор Юрий Гогоци, директор Института наноматериалов имени А. Дж. Дрекселя, Университет ДрекселяПрофессор Юрий Гогоци - самый цитируемый ученый украинского происхождения и один из самых высоко цитируемых ученых в мире. Например, по данным Microsoft Academic за период последние 5 лет в области материаловедения (Materials science) он занимает второе место в мире по цитируемости его работ, по уровню h-index - четвертое. Также и другие наукометрические системы присваивают ему высочайшие рейтинги в мире (Web of Science, Scopus, Google Analytics). Он открыл новые материалы - Максены, которые, возможно, изменят мир. Юрий работал в Германии, Японии, Норвегии и, наконец, остановился в США, в Университете Дрекселя. Публикуем перевод интервью профессора Юрия Гогоци Журналу "Куншт" о его разработках, поисках вдохновения, финансирования и контактов в научном мире.

 
Масштабируемая система c реактором травления для производства перспективных 2D наноматериалов максенов MXenes

alt

Недавно группа исследователей опубликовала статью в журнале Advanced Engineering Materials о том, что лабораторная система с реактором травления, разработанная в Materials Research Centre в Киеве совместно с Университетом дрекселя, может превращать керамический материал-исходник в порошкообразный черный двумерный карбид титана MXene партиями в количестве до 50 граммов за синтез.

 
Участник проекта CANBIOSE из Центра материаловедения (MRC), Киев, Украина, посетил партнерскую организацию Вильнюсский университет, Вильнюс, Литва, 22.02-14.03.2020 г

altУчастник проекта CANBIOSE из Центра материаловедения (MRC), выполнил визит в партнерскую организацию Вильнюсский университет, для выполнения программы совместных исследований и тренингов.

 
Наука будущего и использование разумных наноматериалов в новых технологиях. Лекция профессора Юрия Гогоци для школьников, воспитанников Малой академии наук Украины в КПИ им. Сикорского, 27 февраля 2020 года

altВсемирно известный ученый-украинец профессор Юрий Георгиевич Гогоци рассказал о последних новинках нанотехнологий. Возможность для общения с ученым мирового уровня - редкость, но воспитанникам Малой Академии Наук Украины (МАН) везет. Именно такую ​​возможность они недавно получили.

 
Участник проекта H2020 NANO2DAY от MRC Иван Гришко посетил партнерскую организацию Латвийского Университета, Риги, в ноябре-декабре 2019 года

altИнженер-исследователь из MRC Иван Гришко находится в Латвийском университете, где провел семинар по MXenes

 
Участники проекта Horizon 2020 CANBIOSE из Центра материаловедения (MRC), Киев, Украина, посетили партнеров по проекту из Университета им. Адама Мицкевича в Познани, Польша, 27.10-26.11.2019019

altСовместно с польскими коллегами они  получали навыки работы с оборудованием, участвовали в работе по тестированию и характеризации наноматериалов.

 
Участники проекта Horizon 2020 NANO2DAY из Центра материаловедения (MRC), Киев, Украина, Зозуля Юлия и Виталий Балицкий посетили партнерскую организацию Каунасский технологический университет, Каунас, Литва, август 2019 г. - октябрь 2019 г.

altСовместно с коллегами из КТУ они занимались симуляциями и моделированием механических свойств наноматериалов и нанокомпозитов.

 
Поздравляем профессора Юрия Гогоци с избранием в члены Европейской академии наук (EURASC)!

профессор Юрий Гогоци, Университет Дрекселя, СШАВ январе 2019 года профессор Юрий Гогоци был избран членом Европейской академии наук (EURASC). Профессор Юрий Гогоци - ведущий украинский и американский ученый в области химии, с 2000 года профессор Университета Дрекселя, Филадельфия, США, в области материаловедения, инженерии и нанотехнологий.

 
Участники проекта Horizon 2020 NANO2DAY из Центра материаловедения (MRC), Киев, Украина, посетили партнерскую организацию Белорусский государственный университет, Минск, Беларусь, май 2019 года.

altMRC посетил партнерскую организацию Белорусский государственный университет. Вместе с нашими партнерами из БГУ был обсужден и изучен опыт в области диспергирования CNT и графена в полимерах. Проводились сравнения разных смол  и отвердителя для изготовления полимерной матрицы.