CIMTEC 2014 - 13th International Conference on Modern Materials and Technologies in Montecatini Terme, Tuscany, Italy, June 8 to 19, 2014.

CIMTEC 2014 - 13th International Conference on Modern Materials and Technologies -was held in Montecatini Terme, Tuscany, Italy, June 8 to 19, 2014.

 CIMTEC 2014 consisted of the 13th International Ceramics Congress (June 8-13) and of the 6th Forum on New Materials (June 15-19), each of them including a number of Symposia, Special Sessions, and Conferences.

As a major long standing event for the international materials community, CIMTEC again gathered together a large and qualified audience of materials scientists, physicists, chemists and engineers as well as of experts of a wide range of the most demanding application areas of modern materials, from the molecular and nanoscales to large complex integrated systems.

CIMTEC 2014

Nanomaterials Group from Drexel Nanomaterials Institute of Drexel University, USA, lead by professor Yury Gogotsi visited International Conference on Modern Materials and Technologies CIMTEC 2014 in Montecatini Terme, to take part in the 13th International Ceramics Congress and the 6th Forum on New Materials.

13th International Ceramics Congress, June 8-13 2014

SYMPOSIUM CG

PROGRESS IN NANO-LAMINATED TERNARY CARBIDES AND NITRIDES (MAX PHASES) AND DERIVATIVES THERE OF (MXENES)

CG:HP02 Optical and Electronic Properties of Two-dimensional Ti3C2 Epitaxial Thin Films (Hot Poster)
J. HALIM1,2,3, M.R. Lukatskaya1,2, K.M. Cook1,2, Jun Lu3, C.R. Smith1,2,L.-A. Näslu nd3, S.J. May1, L. Hultman3, Y. Gogotsi1,2, P. Eklu nd3, M.W.Barsoum1, 1Dept. of Materials Science & Engineering, Drexel University,Philadelphia, PA, USA; 2A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA, USA, Dept. of Materials Science & Engineering, Drexel University, Philadelphia, PA, USA; 3Thin Film Physics Division, Dept. of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden

Abstract

Since the discovery of graphene, two-dimensional (2D) materials receive growing interest because of their unique properties as compared to their bulk counterparts. Although graphene has garnered the lion’s share of this attention, other 2D materials beyond MoS2 and BN are being sought out. Recently, a new family of 2D materials of early transition metal carbides and carbonitrides (Ti2C, Ti3C2, Ti3CN, V2C, Nb2C, Ta4C3 and more) known as MXenes has been discovered. Herein we show the fabrication of a 2D epitaxial Ti3C2 thin film, formed by the selective etching of Al from magnetron sputter-grown Ti3AlC2.

The optical transmittance, electrical resistivity, and magnetoresistance of the films were also measured. These data show that the films are up to ~ 90% transparent in the visible to infrared range, and that metallic-like conductive behavior is exhibited down to ~ 100 K. At temperatures below 100 K, resistivity of the films increased with decreasing temperature and magnetoresistance proved to be negative, due to a weak localization phenomenon characteristic of 2D films. These results illustrate the potential for the use of Ti3C2 thin films as transparent conductive electrodes, as well as in electrical, photonic and sensing applications.

CG-5:IL01 MXenes: 2D hosts for Ions in Electrochemical Energy Storage Systems M. Naguib, M. Lukatskaya, o. Mashtalir, Y. Gogotsi, M. Barsoum, Department of Materials science & engineering, and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pa, USA

Abstract

Recently we developed a new family of two-dimensional (2D) early transition metal carbides and carbonitrides, that we labeled MXenes. MXenes are produced by selective etching of the A-group layers from MAX phases. The latter is a large family of ternary layered metal carbides and/or nitrides. The etching process is carried out in an aqueous hydrofluoric acid. Thus, the as synthesized MXenes surface is terminated by O, OH and/or F. To date the following MXenes have been produced: Ti3C2, Ti2C, V2C, Nb2C, Ta4C3, TiNbC, (V0.5Cr0.5)3C2, and Ti3CN. Unlike conventional transition metal carbides, MXenes were found to be promising electrode materials in lithium-ions batteries (LIBs).

MXenes showed an excellent ability to handle cycling rates that are considerably faster than commercial graphite anodes can handle in LIBs (up to 40C). MXenes can also be used in electrochemical capacitors. At >300 F/cm3, the volumetric capacitance of MXenes was superior to that of activated carbon – the material of choice at this time. Herein we report on the latest progress in synthesis and use of MXenes as hosts for ions in electrochemical energy storage systems.

6th Forum on New Materials, June 15-19 2014

 Symposium FC
Electrochemical Energy Storage Systems: the Next Evolution

FC-2:L05  Effect of Cation on Diffusion Coefficient of Ionic Liquids at Onion-like Carbon Electrodes
K. VAN AKEN1, J.K. MCDONOUGH1, SONG LI2, GUANG FENG2, S.M. CHATHOTH3, 5, E. MAMONTOV3, P.F. FULVIO4, P.T. CUMMINGS2, SHENG DAI4, Y. GOGOTSI1, 1Department of Materials Science and Engineering & A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA, USA; 2Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; 3Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 4Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 5Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China

Abstract

While most supercapacitors are limited in their performance by the electrolyte stability, using neat ionic liquids (ILs) can expand the voltage window and temperature range of operation. Three different techniques were used to investigate the characteristics of three ILs in a comprehensive approach for a new field of electrolytes. Exohedral onion-like carbon (OLC) was chosen as the electrode material, allowing the behavior of ILs to be investigated without the influence of the carbon structure. In this study, ILs with bis(trifluoromethylsulfonyl)imide as anion were investigated as the electrolyte in OLC-based electrochemical capacitors.

To probe the effect of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests were performed. Diffusion coefficients were measured using electrochemical impedance spectroscopy and correlated with quasielastic neutron scattering and molecular dynamics simulation. The IL with the smaller sized cation had a larger diffusion coefficient, leading to higher capacitance at faster cycling rates. Electrolyte performance was also correlated with increasing temperature.

 Source: www.cimtec-congress.org

Related Items:

12th International Ceramics Congress CIMTEC 2010, Montecatini Terme, Florence, Italy 6-18, June 2010

CIMTEC 2010Alexey Gogotsi represented Materials Research Centre at CIMTEC 2010 with a poster presentation on Nanomanufactoring in Disсlosing Materials at Nanoscale: Synthesis and Applications of Photocatalytically Active Titania Nanoparticles ...

 

 

 

News from MRC.ORG.UA

Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes. 

 
Yury Gogotsi is the most influential scientist of modern Ukraine

altThe life of Yury Gogotsi is a constant back and forth between the top laboratories in the world, writing articles in the best scientific journals and research materials that can change the world around them.