New Energy: Science and Technology Articles
Rus На русском Eng In English


Synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF

The SEM image captured by Babak Anasori shows MXene particlesMXenes have potential uses in a broad range of energy and electronics applications, including lithium-ion batteries and supercapacitors. The materials' layered structure resembles that of graphene — hence the suffix ene — a two-dimensional sheet of carbon, but its chemistry is more complex and more versatile.

Researches report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Has been present evidence for the exfoliation of the following MAX phases.

 

Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors

Schematic of the operation of an EFC system. Slurries are charged in the flow cellNovel electrical energy storage concept, the electrochemical flow capacitor (EFC), holds much promise for grid-scale energy storage applications.

The EFC combines the principles behind the  operation of flow batteries and supercapacitors, and enables rapid charging/discharging and decoupled energy/power ratings. Electrical charge is stored in a flowable carbon slurry composed of low-cost and abundantly available carbon particles in pH-neutral, aqueous electrolyte.

 

MXene - New Family of 2-D Metal Carbides and Nitrides

Ti3AlC2 forming two OH-terminated MXene layersAn urgent challengecurrently faced by researchers and the public alike is the ability to identify the next generation of sustainable, cost-effective, and energy efficient materials for our everyday use. While searching for new materials for electrical energy storage, a team of Drexel University materials scientists has discovered a new family of two-dimensional compounds proposed to have unique properties that may lead to groundbreaking advances in energy storage technology.

In their paper, the research team recounts their ability to transform three dimensional titanium-aluminum carbide, a typical representative of a family of layered ternary carbides called MAX phases, into a two dimensional structure with greatly different properties. MAX phases, known as ductile and machineable ceramics, have been researched by Prof. Barsoum’s lab for more than a decade and dozens of layered carbides, nitrides and carbonitrides with a variety of properties have been synthesized. However, these ceramics have always been produced as 3-dimensional materials.

 

Pore Size Reduction Increases Energy Stored In Super Capacitors

Computational modeling of carbon supercapacitors
Yury Gogotsi of Drexel University with his co-workers felt the necessity of studying a potential supercapacitor material at the atomic level to analyze certain experimental results. A research team under the supervision of Oak Ridge National Laboratory’s (ORNL) computational physicist Vincent Meunier and computational chemists Jingsong Huang and Bobby Sumpter enabled the analysis at the atomic level.

When you're talking about nanomaterials, however, that eye is pretty much useless unless it's looking through an electron microscope or at a computer visualization. Yet the pits and ridges on a seemingly flat surface—so small they are invisible without such tools—can give the material astonishing abilities. The trick for researchers interested in taking advantage of these abilities lies in understanding and, eventually, predicting how the microscopic topography of a surface can translate into transformative technologies.

 

Supercapasitors: Big Energy Storage in Thin Films

Computational modeling of carbon supercapacitors

Energy storage devices called superapacitors can be recharged many more times than batteries, but the total amount of energy they can store is limited. This means that the devices are useful for providing intense bursts of power to supplement batteries but less so for applications that require steady power over a long period, such as running a laptop or an engine.

Now researchers at Drexel University in Philadelphia have demonstrated that it's possible to use techniques borrowed from the chip-making industry to make thin-film carbon ultracapacitors that store three times as much energy by volume as conventional ultracapacitor materials. While that is not as much as batteries, the thin-film ultracapacitors could operate without ever being replaced.

 

Materials for electrochemical capacitors

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials.

The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electroche.

 



News from MRC.ORG.UA

The 6th International Conference on Novel Functional Carbon Nanomaterials at the 8th Forum on New Materials (CIMTEC 2018) in Perugia, Italy, on. June 11-14

Фото Yury Gogotsi.The 6th International Conference “Novel Functional Carbon Nanomaterials” highlighted recent achievements and challenges in the synthesis, structural control and modeling at the meso- and nano-scales of the variety of low-dimensional carbon allotropes including nanodiamonds, diamond-like carbon, fullerenes, nanotubes, graphene and graphene-related structures, as well as high surface area carbon networks, which are promising for a range of emerging applications in energy conversion and storage, water purification, high-speed nanoelectronics, optoelectronics, photonics, quantum information processing, quantum computing, biosensing, drug delivery, medical imaging, thermal management, catalysis, lubrication, etc.

 
1st International Conference on MXenes at Jilin University, Changchun, China

MXene conference 2018The meeting is the first international conference focusing on MXene materals, which is to bring scientists in the two-dimensional materials or energy area to interact and discuss the advances and challenges in various fields.

 
Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
H2020-MSCA-RISE Nano2Day Kick-off project meeting, Academic Centre of University of Latvia, Riga, 10-11 May 2018

altH2020-MSCA-RISE project „Multifunctional polymer composites doped with novel 2D nanoparticles for advanced applications NANO2DAY” started on May 1, 2018. It is aimed to develop novel multifunctional composites with outstanding electronic and mechanical properties by incorporation of novel MXene nanosheets into polymer matrixes.

 
Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine" as part of the NAU Info Day

horizon2020 семінарOn February 14, 2018, Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine"  as part of the NAU Info Day.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
Director of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China

Visit to Jilin University, Changchun, ChinaDirector of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China. He had a work meeting with Yury Gogotsi, Distinguished University Professor and Trustee Chair in the Department of Materials Science and Engineering at Drexel University, USA, and Distinguished Foreign Professor at Jilin University and Professor Wei Han, Executive Deputy Director of International Collaborative Center of Talents, International Center of Future Science, and discussed ongoing joint works and research on materials for supercapacitors.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.