Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Kateryna Diedkova1,2 · Yevheniia Husak1,3 · Wojciech Simka3 · Viktoriia Korniienko1,2 · Bojan Petrovic4 · Anton Roshchupkin1 · Agnieszka Stolarczyk3 · Natalia Waloszczyk3 · Ilya Yanko1 · Kaspars Jekabsons2 · Maria Čaplovičová5 · Alexander D. Pogrebnjak1,6 · Veronika Zahorodna7 · Oleksiy Gogotsi7 · Iryna Roslyk7 · Ivan Baginskiy1,7 · Marko Radovic8 · Sanja Kojic9 · Una Riekstina2 · Maksym Pogorielov1,2

1 Sumy State University, 2 Rymskogo‑Korsakova St, Sumy 40007, Ukraine
2 University of Latvia, 3 Jelgavas St, Riga 1004, Latvia
3 Faculty of Chemistry, Silesian University of Technology, 9, Strzody St, 44‑100 Gliwice, Poland
4 Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
5 Centre for Nanodiagnostics of Materials, Slovak, University of Technology in Bratislava, 5 Vazovova St, Bratislava 812 43, Slovakia
6 Faculty of Material Science in Trnava, Institute of Materials, Slovak University of Technology in Bratislava, Jana Bottu c2781/25, Trnava, Slovakia
7 Materials Research Centre, 3 Krzhizhanovskogo St, Kyiv 03142, Ukraine
8 University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
9 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

Effective cardiac tissue regeneration necessitates scaffolds that mimic the native extracellular matrix and possess desirable properties, such as electrical conductivity and biocompatibility. The choice of an appropriate fabrication method is paramount in achieving reproducibility, scalability, and rapid production of cardiac tissue patches. Electrospinning, a versatile and widely utilized technique, offers precise control over fiber diameter, pore size, and alignment, rendering it an ideal method for creating intricate cardiac scaffolds. In light of the limitations of existing therapies and the need for innovative approaches, this research aims to explore the development of novel patches for cardiac tissue regeneration. By investigating the integration of MXenes into electrospun polycaprolactone (PCL) membranes, we aim to harness the unique properties of MXenes to create conductive, biocompatible, and mechanically robust scaffolds that promote cell adhesion, proliferation, and functional maturation.

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)

The application of oxygen plasma treatment enhances the infiltration of MXene into the PCL electrospun membrane, significantly reducing the surface contact angle and promoting cell adhesion. Regardless of the number of MXene deposition repetitions, all variants demonstrated strong biocompatibility and supported the formation of cell symplasts after fibroblast seeding. The remarkable electrical conductivity of PCL-MXene membranes, coupled with the positive biological outcomes presented in this study, has the potential to drive significant advancements in the field of cardiac tissue engineering. This research offers fresh insights and approaches to tackle the challenges associated with myocardial repair and regeneration.

 In this research, we have developed a new method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. This innovative approach has demonstrated a positive impact on fiber size, increased the porous structure and significantly reducing the contact angle of the PCL membrane and facilitating deep impregnation of MXene into the material. The resulting PCL-MXene composite membrane is non toxic, exhibits the desired conductive properties necessary for cardiac tissue regeneration, with no significant differences observed between the various numbers of MXene depositions. Overall, the incorporation of MXenes into biodegradable PCL membranes shows promise in conferring electroconductivity and enhancing cellular response in tissue-engineered cardiac patches.

These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.


Keywords: MXene · PCL · Electroconductive electrospun membrane · Oxygen plasma treatment · Tissue regeneration

Read more on the publisher`s website:

Diedkova, K., Husak, Y., Simka, W. et al. Novel electrically conductive electrospun PCL-MXene scaffolds for cardiac tissue regeneration. Graphene and 2D Mater (2023). https://doi.org/10.1007/s41127-023-00071-5

 

MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser

Development of tailored MXene PTT treatment targeting tumor cells. We demonstrate both low toxicity and good biocompatibility of this MXene in vitro, as well as a favorable safety profile based on the experiments in vivo.Presenting our recent collaborative research paper on  MXene use for PPT anticancer therapy, the biocompatibility of MXenes in vitro and in vivo studies:

Sergiy Kyrylenko, Oleksiy Gogotsi, Ivan Baginskiy, Vitalii Balitskyi, Veronika Zahorodna, Yevheniia Husak, Ilya Yanko, Mykolay Pernakov, Anton Roshchupkin, Mykola Lyndin, Bernhard B. Singer, Volodymyr Buranych, Alexander Pogrebnjak, Oksana Sulaieva, Oleksandr Solodovnyk, Yury Gogotsi, Maksym Pogorielov, MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl. Mater. Interfaces 2022, 14, 25, 28683–28696, https://doi.org/10.1021/acsami.2c08678

 

 

News from MRC.ORG.UA

Our new collaborative research paper with Drexel team on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene

porous MAX phase technologyIn this study, we have optimized the synthesis of MAX phases for MXene manufacturing. The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive raw materials.

 
Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 
Read recently published paper about our collaborative work: MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

MXene Functionalized Kevlar Yarn via Automated,Continuous Dip CoatingThe rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed. 

 
MX-MAP project secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to University of Padova, Italy, October 2023

altMX-MAP project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed split secondment visit to project partner organization University of Padova (Italy). MX-MAP project works on development of the key strategies for MXene medical applications. 

 
CanbioSe Project Meeting and Project Workshop, September 26-27, 2023, Montpellier, France

altCanbioSe Project Meeting and Project Workshop was held  at European Institute of Membranes (IEM), University of Montpellier, France on September 26-27, 2023. The workshop was focused on the theme of "Commercializing Biosensors, Intellectual Property, and Knowledge Transfer from Academia to Industry.

 
IEEE NAP 2023: 2023 IEEE 13th International Conference “Nanomaterials: Applications & Properties” Sep 10, 2023 - Sep 15, 2023, Bratislava, Slovakia

altDr. Oleksiy Gogotsi and Veronika Zahorodna visited IEEE NAP 2023 conference held in Bratislava on September 10-15, 2023. The prime focus of the IEEE NAP-2023 was on nanoscale materials with emphasis on interdisciplinary research exploring and exploiting their unique physical and chemical proprieties for practical applications.

 
Visit to CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA)

altDirector of MRC and Carbon-Ukraine Dr. Oleksiy Gogotsi visited CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA). He meet with Dr. Pierluigi Bilotto, Dr. Chriatian Pichler and their colleagues, discussing novel materials and r&d activities for new technologies.

 
MX-MAP Session at YUCOMAT Conference 2023 "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

altMX-MAP Session was held during the YUCOMAT Conference 2023 titled: "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

 
THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023, HERCEG NOVI, MONTENEGRO, September 04-08, 2023

altThe conference was organised by the Materials Research Society of Sebia and supported by MRS-Singapore with the participation of a pleiad of distinguished scientists.

 
CANBIOSE secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to European Institute of Membranes in Montpellier, France

altCANBIOSE project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed secondment visit to project partner organization European Institute of Membranes in Montpellier (France) on August -September 2023.

 
MRC researchers visited Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to CANBIOSE project, April-May 2023

altMRC researchers Dr. Oleksiy Gogotsi and Veronika Zahorodna were visiting Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to close collaboration with AMU team led by Dr. Igor Iatsunskiy. 

 
Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.