Engineering design and calculations

Rus На русском Eng In English

Using of additional opportunities of CAD specialized program products – the software intended for development of drawings, engineering and technological documentation as well as 3D models. CAD is computer-aided design system to draw in CAE – designing of 3D solids, CAM – systems of engineering calculations enables our engineers to solve non-standard tasks of any complexity, is the use of computer software to control machine tools and related machinery in the manufacturing of workpieces .  Computer-aided design (CAD) is program technologies for designing of 2D and 3D shape of the objects. It’s widely used in lots of spheres, in particular, animation, automobiles, shipbuilding, aerospace industry, industrial and architectural design and so forth. CAD is the main driving force to explore in the field of computational geometry, computer graphics (both hardware and software) as well as discrete differential geometry.

Up-to-date systems of engineering calculations (CAE) are usually applied along with CAD systems. CAE systems are the major providers of information to help support design teams in decision making.CAE areas covered include: Stress analysis on components and assemblies using Finite Element Analysis; еhermal and fluid flow analysis, сomputational fluid dynamics; multibody dynamics and kinematics; analysis tools for process simulation for operations, product or process optimization.

Methods applied for engineering calculations:

Finite element method. - The basic idea in the finite element method is to find solution of a complicated problem by replacing it by a simpler one. Since the actual problem is replaced by a simpler one in finding the solution, it would be possible to find only an approximate solution rather than the exact solution. Moreover, in the finite element method, it will often be possible to improve or refine the approximate solution by spending more computational effort. For the last decades this method is the leading one and widely applied.

engineering calculations in Autodesk InventorFinite difference method is a well-known and simplest method of interpolation. It is used to solve ordinary differential equations that have conditions imposed on the boundary rather than at the initial point.

The finite-volume method is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume.

engineering calculations tenses on mises engineering calculations of tennsess on the hopper wall

The von Mises stress is often used in determining whether an isotropic and ductile metal will yield when subjected to a complex loading condition. This is accomplished by calculating the von Mises stress and comparing it to the material's yield stress, which constitutes the von Mises Yield Criterion.

The objective is to develop a yield criterion for ductile metals that works for any complex 3-D loading condition, regardless of the mix of normal and shear stresses. The von Mises stress does this by boiling the complex stress state down into a single scalar number that is compared to a metal's yield strength, also a single scalar numerical value determined from a uniaxial tension test (because that's the easiest) on the material in a lab.Hydrostatic and deviatoric stresses.The hydrostatic stress is related to volume change, while the deviatoric stress is related to shape change.

Materials Research Centre uses Autodesk Inventor 3D CAD software products, that offer a comprehensive, flexible set of software for 3D mechanical design, product simulation, tooling creation, engineer to order, and design communication. Inventor takes engineer beyond 3D to Digital Prototyping by enabling him to produce an accurate 3D model that can help to design, visualize, and simulate products before they are built. Digital Prototyping with Inventor helps companies design better products, reduce development costs, and get to market faster.

Autodesk Inventor comes in different product configurations that offer specific levels of functionality to fit every design needs. Inventor is powerful 3D CAD Software for Mechanical Design. Autodesk Inventor 3D mechanical design software includes CAD productivity and design communication tools that can help to reduce errors, communicate more effectively, and deliver more innovative product designs faster. The Inventor model is an accurate 3D digital prototype that can validate the form, fit, and function of a design and unites direct modeling and parametric workflows.

vizualization autodesk inventor 3d modelling autodesk-3d-model

3D models of equipment by Autodesk Inventor

design autodesk inventor 3d autodesk engineering design by Inventor

 

3d design engineering design by Inventor designing in autodesk inventor

 

designing in autodesk inventor autodesk inventor for CAD model by blender

all 3D models can be divided into two categories:

Solid - These models define the volume of the object they represent, they are mostly used for nonvisual simulations such as medical and engineering simulations, for CAD and specialized visual applications

Shell/boundary - these models represent the surface, the boundary of the object, not its volume

Materials Research Centre is actively supporting using of CAD with open source code for multifunctional operation environment GNU/Linux assembled under the model of free and open source software. In order to develop engineering documentation (2D and 3D design drawings) co-workers of the Materials Research Centre’s Design Department use specialized software on the basis of multifunctional operation environment GNU/Linux. It is used as operation system of the most powerful supercomputers all over the world (servers, computers of non-standard architecture due to the opportunity of OS kernel quick adaptation and varieties of the software, military systems, computers mounted in various devices due to wide range of opportunities on Linux configuring with a task being performed.

3D model blender 3D model blender 3D screenshort Blender
3d model by GMSH
Stair design model by BLENDER

Vizualization of stair in Blender


Freeware is being actively used for design and engineering calculation. It’s a wide range of software with right of the user for unlimited installation, launching as well as easy use, study, distribution, changing (upgrading) and open-source software. This is the software with open-source code, available for browsing, study and upgrading which requires additional qualification but allows to update the most open program, as well as to use code for creating new programs, updating and correction of mistakes.

 

News from MRC.ORG.UA

Opening of the 2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes was opened on May 10, 2019 at Beijing University of Chemical Technology.

 
2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes will be held in Beijing, China on May 10-12, 2019. The conference is hosted and organized by Beijing University of Chemical Technology. 

 
Project Meeting and Workshop under Horizon-2020 MSCA RISE CanBioSE project, 17-18 th of April 2019, Vilnius, Lithuania

altResearch team of Materials Research Centre led by Oleksiy Gogotsi take part in CanBioSe project meeting and Workshop held in Vilnius University, Vilnus, Lithuania. MRC team met with another CanBioSe project participants, presented MRC company. Also MRC director gave a talk on 2d materials MXenes and their possible applications.

 
MRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019, 2-5 April, 2019

altMRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019 to learn more about last trends in polymer and coating industry and to discuss with conference participants actual questions and present their NANO2DAY research project.

 
Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Schematic of the cell configuration when the thickness of the electrode increases from 200 mm to 800mmMRC team (Materials Research Centre, Kiev, Ukraine) and research groups from Jilin University (Changchun, Cnina) and Drexel University (Philadelphia, USA) presented breakthrough research on increasing the specific capacity for high-power supercapacitors with coarse-grained carbon electrodes and thickness up to 800 μm, recently published in Electrochimica Acta. In this work, they reported on the trends in capacitance change for coarse-grained CDC and AC electrodes with the thickness from 200 to 800 mm.

 
Seminar on Novel 2D materials MXenes: Synthesis and applications, Institute of Physics, Kiev, Ukraine, February 13, 2019

altDirector of Materials Research Centre Oleksiy Gogotsi was invited by professor Galina Dovbeshko, to take part in scientific discussion and seminar, held at the Department of Physics of Biological Systems, Institute of Physics National Academy of Sciences of Ukraine. He gave a seminar lecture on synthesis and properties of novel two-dimensional material MXene. Also Oleksiy Gogotsi presented current research MSCA RISE project NANO2DAY where MRC is participating with MXene expertise.

 
NANOGUARD2AR Project Workshop: 29-30 January, 2019 Lisbon, Portugal Safety and Regulation of the Engineering Nanomaterials, 29-30 January, 2019 Lisbon, Portugal

altThe aim of the NANOGUARD2AR project 3rd Workshop is to discuss current the state-of-the-art on Safety of the Nanomaterials Application to the Indoor Air Quality Control, including green building concept and overall progress with Engineering Nanomaterials Regulation in EU and worldwide

 
Congratulations to Professor Yury Gogotsi with being elected as Fellow of the European Academy of Sciences!

professor Yury Gogotsi, Drexel UniversityIn January 2019 Professor Yury Gogotsi was elected as a Fellow of the European Academy of Sciences (EURASC).

Professor Yury Gogotsi is a leading Ukrainian and American scientist in the field of material chemistry, professor at Drexel University, Philadelphia, PA since the year 2000 in the fields of Materials Science and Engineering and Nanotechnology.

 
ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else. It was love at first sight for Yury Gogotsi. 

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”. He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

 
NANO2DAY project: Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018

altDue to the NANO2DAY project under european scientific  research program HORIZON 2020 Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018. 

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi and Veronika Zahorodna visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018

alt

NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi (MRC project leader) and Veronika Zahorodna (early-staged researcher, in the framework of international scientific cooperation on the Horizon 2020 program, visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018 in accordance with the travel plan on the project to perform planned project activities.

 
MRC director Oleksiy Gogotsi at the work meeting in Drexel University, Philadelphia, USA, made a presentation of the company and its activitties in international r&d projects

altDirector of Materials Research Centre (Kiev, Ukraine) Oleksiy Gogotsi  at the work meeting in Drexel University, Philadelphia, USA, made a  presentation of the company and its activitties in international research and development projects. Also Oleksiy Gogotsi presented HORIZON 2020 MSCA RISE Project №777810 NANO2DAY: MULTIFUNCTIONAL POLYMER COMPOSITES DOPED WITH NOVEL 2D NANOPARTICLES FOR ADVANCED APPLICATIONS.

 
Seminar on 2D Materials Beyond Graphene by prof. Zdenek Sofer University of Chemistry and Technology (Prague) at Drexel University, USA, on October 18, 2018

altDuring NANO2DAY project visit  to Drexel University (Philadelphia, USA), director of Materials Research Centre (kiev, Ukraine) Oleksiy Gogotsi met with Assoc. Prof. Zdeněk Sofer from University of Chemistry and Technology, Prague (Chech Republic) and attended his seminar on nanomaterials. Prof. Zdenek Sofer in Drexel University gave an excellent seminar on 2D Materials Beyond Graphene.

 
NANO2DAY project: research scientist Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018

NANO2DAY project Maksym Plakhotnyuk, DTU visited MRC, November 2018Due to the NANO2DAY project under european scientific  research program HORIZON 2020 research scientist  Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018. 

 
Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.