Carbon Materials as a Flowable Electrode in Electrochemical Flow Capacitors

Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors
Jonathan W. Campos, Majid Beidaghi, Kelsey B. Hatzell, Christopher R. Dennison,  Benjamin Musci, Volker Presser,  Emin C. Kumbur, Yury Gogotsi
http://dx.doi.org/10.1016/j.electacta.2013.03.037

Rus На русском Eng In English

Novel electrical energy storage concept, the electrochemical flow capacitor (EFC), holds much promise for grid-scale energy storage applications. The EFC combines the principles behind the     Carbon Slurry;     Electrochemical Flow Capacitor;     Flow Battery;     Supercapacitor operation of flow batteries and supercapacitors, and enables rapid charging/discharging and decoupled energy/power ratings. Electrical charge is stored in a flowable carbon slurry composed of low-cost and abundantly available carbon particles in pH-neutral, aqueous electrolyte. Charge storage and transfer is analogous to solid carbon electrodes in conventional supercapacitors. Here, the effects of carbon particle solid fraction, shape, and size on the electrochemical and rheological properties of slurry electrodes are investigated. A static cell configuration is utilized for studying the electrochemical properties of the flowable electrodes. The electrochemical properties of the slurry electrodes tested in a static cell are found to be similar to that of solid electrodes in conventional supercapacitors for both, large spherical and anisometric activated carbons. Flow properties of the slurry electrodes are obtained for shear rates corresponding to pumping shear rates by rheometry. Results indicate that electrochemical and rheological properties of slurries depend on their concentration, shape and size of the carbon particles used in the slurries. For a range of concentrations, slurries based on spherical carbon particles show lower viscosities compared to anisometric activated carbon based slurries while performing similar electrochemically.

Fig. 2. (a-d) SEM micrographs of (a) CB1, (b) CB2, (c) CB3 and (d) AC, and (e) pore size distributions of the porous carbon materials used in this study.

Fig. 3. (a) Dependency of the average specific capacitance calculated from cyclic voltammetry (CV) on solid fraction of carbon particles; error bars show the standard deviation. The Cyclic voltammograms of carbon beads (CB) and activated carbon (AC) slurries (in 1 M Na2SO4) charged from 0 V to 0.75 V show capacitive behavior as demonstrated by rectangular shapes at low scan rates. CVs were recorded at (b) 5 mV s−1, (c) 20 mV s−1, and (d) 10 mV s−1.

Fig. 4. Specific capacitances at varying solid fractions (see legend in a) for scan rates from 2-100 mV s−1 calculated by CV for (a) CB1, (b) CB2, (c) CB3, and (d) AC.

Fig. 5. (a,b) Fifth galvanostatic cycle (200 mA g−1) after pre-cycling shows low resistance and symmetry of bead and AC slurries. (c) Dependency of the average specific capacitance and (d) ESR on solid fraction of porous carbon calculated from GC.

Fig. 6. Cyclic voltammograms of 23 wt% CB2 slurry charging to 0.9 - 1.5 V at 10 mV s−1. Coulombic efficiency drops slightly from 99.2 to 98.5% for the extended voltage window.Fig. 8. Rheograms of slurry electrodes, 20 and 23 wt% solid, in 1 M Na2SO4 with fits to raw data. Shear rates for a flow rate of 1-10 mL min−1 in the current lab scale EFC range from 40-400 s−1.

 

 

 

 

RELATED ITEМS:

The electrochemical flow capacitor for grid-scale energy storage

Electrochemical Flow Cells for Rapid Energy Storage and Recovery

 

 

 

 

 

 

 

 

 

 

 

News from MRC.ORG.UA

Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.