Synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF

Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, “Two-Dimensional Transition Metal Carbides”, ACS Nano, Vol 6, No. 2, 1322-1331, 2012

ACerS' Ross Coffin Purdy Award will recognize the article, which was the first to describe a facile method to produce a large family of two-dimensional layered, early transition metal carbides and nitrides, labeled MXenes. The latter are so-called because they are produced by selective etching of the A-group element — aluminum in this case — from an even larger family of layered solids labeled the MAX phases. The MAX phases were in turn discovered by Michel Barsoum, Ph.D., and co-workers roughly 15 years ago at Drexel University.synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid

Barsoum, A.W. Grosvenor and Distinguished Professor at Drexel University, and Distinguished University Professor and Trustee Chair Yury Gogotsi, Ph.D., also from Drexel Materials, were co-authors of the award-winning paper, along with students Michael Naguib, Olha Mashtalir and Joshua Carle, together with collaborators from Linkoping University in Sweden.

The annual Ross Coffin Purdy Award recognizes researchers "judged to have made the most valuable contribution to ceramic technical literature." The ACerS board unanimously agreed to grant the honor to the Barsoum and Gogotsi team's work. The award will be presented in October during the Materials Science and Technology Conference in Montréal, Canada.

MXenes have potential uses in a broad range of energy and electronics applications, including lithium-ion batteries and supercapacitors. The materials' layered structure resembles that of graphene — hence the suffix ene — a two-dimensional sheet of carbon, but its chemistry is more complex and more versatile.

"The research reported in this paper is an exciting advance in this new family of materials for which the applications are just beginning to be envisioned," said Dawn Bonnell, Ph.D., Trustee Chair Professor in the Materials Science Department of the University of Pennsylvania and director of the Nano/Bio Interface Center. Bonnell nominated Barsoum's group for the honor.The SEM image captured by Babak Anasori shows MXene particles

In their ACS Nano paper "Two-Dimensional Transition Metal Carbides," the authors acknowledge funding from the Assistant Secretary for Energy Efficiency and Renewable Energy Office of Vehicle Technologies of the U.S. Department of Energy, the Commonwealth of Pennsylvania's Ben Franklin Technology Development Authority and the Alexander von Humboldt Foundation.

Ross Coffin Purdy, in whose honor this award is given, served The American Ceramic Society for 24 years as General Secretary and Editor of its publications. He was the recipient of many awards, a Fellow and Honorary Life Member, and President of the Society.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences.

Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, “Two-Dimensional Transition Metal Carbides”, ACS Nano, Vol 6, No. 2, 1322-1331, 2012

Abstract

Secondary electron SEM micrographs for (A) Ti3AlC2 particle before treatment, which is typical of unreacted MAX phases, (B) Ti3AlC2 after HF treatment, (C) Ti2AlC after HF treatment, (D) Ta4AlC3 after HF treatment, (E) TiNbAlC after HF treatment, and (F) Ti3AlCN after HF treatment. In (B–F), the exfoliation is obvious.Herein we report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Herein we present evidence for the exfoliation of the following MAX phases: Ti2AlC, Ta4AlC3, (Ti0.5,Nb0.5)2AlC, (V0.5,Cr0.5)3AlC2, and Ti3AlCN by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication. The removal of the “A” group layer from the MAX phases results in 2-D layers that we are labeling MXenes to denote the loss of the A element and emphasize their structural similarities with graphene. The sheet resistances of the MXenes were found to be comparable to multilayer graphene. Contact angle measurements with water on pressed MXene surfaces showed hydrophilic behavior.

Keywords: MXene; two-dimensional materials; carbides; carbonitrides; exfoliation

Two-dimensional (2-D) materials, such as graphene, are known to have unique properties that, in turn, can potentially lead to some promising applications. Over the years, other 2-D materials with different chemistries have been synthesized by exfoliation of layered 3-D precursors such as boron nitride, metal chalcogenides (e.g., MoS2, WS2, oxides, and hydroxides). In most, if not all, of these cases, the initial bonding between the layers was relatively weak, making the structure amenable to exfoliation.

 

 

News from MRC.ORG.UA

The 6th International Conference on Novel Functional Carbon Nanomaterials at the 8th Forum on New Materials (CIMTEC 2018) in Perugia, Italy, on. June 11-14

Фото Yury Gogotsi.The 6th International Conference “Novel Functional Carbon Nanomaterials” highlighted recent achievements and challenges in the synthesis, structural control and modeling at the meso- and nano-scales of the variety of low-dimensional carbon allotropes including nanodiamonds, diamond-like carbon, fullerenes, nanotubes, graphene and graphene-related structures, as well as high surface area carbon networks, which are promising for a range of emerging applications in energy conversion and storage, water purification, high-speed nanoelectronics, optoelectronics, photonics, quantum information processing, quantum computing, biosensing, drug delivery, medical imaging, thermal management, catalysis, lubrication, etc.

 
1st International Conference on MXenes at Jilin University, Changchun, China

MXene conference 2018The meeting is the first international conference focusing on MXene materals, which is to bring scientists in the two-dimensional materials or energy area to interact and discuss the advances and challenges in various fields.

 
Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
H2020-MSCA-RISE Nano2Day Kick-off project meeting, Academic Centre of University of Latvia, Riga, 10-11 May 2018

altH2020-MSCA-RISE project „Multifunctional polymer composites doped with novel 2D nanoparticles for advanced applications NANO2DAY” started on May 1, 2018. It is aimed to develop novel multifunctional composites with outstanding electronic and mechanical properties by incorporation of novel MXene nanosheets into polymer matrixes.

 
Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine" as part of the NAU Info Day

horizon2020 семінарOn February 14, 2018, Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine"  as part of the NAU Info Day.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
Director of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China

Visit to Jilin University, Changchun, ChinaDirector of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China. He had a work meeting with Yury Gogotsi, Distinguished University Professor and Trustee Chair in the Department of Materials Science and Engineering at Drexel University, USA, and Distinguished Foreign Professor at Jilin University and Professor Wei Han, Executive Deputy Director of International Collaborative Center of Talents, International Center of Future Science, and discussed ongoing joint works and research on materials for supercapacitors.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.