Synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF

Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, “Two-Dimensional Transition Metal Carbides”, ACS Nano, Vol 6, No. 2, 1322-1331, 2012

ACerS' Ross Coffin Purdy Award will recognize the article, which was the first to describe a facile method to produce a large family of two-dimensional layered, early transition metal carbides and nitrides, labeled MXenes. The latter are so-called because they are produced by selective etching of the A-group element — aluminum in this case — from an even larger family of layered solids labeled the MAX phases. The MAX phases were in turn discovered by Michel Barsoum, Ph.D., and co-workers roughly 15 years ago at Drexel University.synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid

Barsoum, A.W. Grosvenor and Distinguished Professor at Drexel University, and Distinguished University Professor and Trustee Chair Yury Gogotsi, Ph.D., also from Drexel Materials, were co-authors of the award-winning paper, along with students Michael Naguib, Olha Mashtalir and Joshua Carle, together with collaborators from Linkoping University in Sweden.

The annual Ross Coffin Purdy Award recognizes researchers "judged to have made the most valuable contribution to ceramic technical literature." The ACerS board unanimously agreed to grant the honor to the Barsoum and Gogotsi team's work. The award will be presented in October during the Materials Science and Technology Conference in Montréal, Canada.

MXenes have potential uses in a broad range of energy and electronics applications, including lithium-ion batteries and supercapacitors. The materials' layered structure resembles that of graphene — hence the suffix ene — a two-dimensional sheet of carbon, but its chemistry is more complex and more versatile.

"The research reported in this paper is an exciting advance in this new family of materials for which the applications are just beginning to be envisioned," said Dawn Bonnell, Ph.D., Trustee Chair Professor in the Materials Science Department of the University of Pennsylvania and director of the Nano/Bio Interface Center. Bonnell nominated Barsoum's group for the honor.The SEM image captured by Babak Anasori shows MXene particles

In their ACS Nano paper "Two-Dimensional Transition Metal Carbides," the authors acknowledge funding from the Assistant Secretary for Energy Efficiency and Renewable Energy Office of Vehicle Technologies of the U.S. Department of Energy, the Commonwealth of Pennsylvania's Ben Franklin Technology Development Authority and the Alexander von Humboldt Foundation.

Ross Coffin Purdy, in whose honor this award is given, served The American Ceramic Society for 24 years as General Secretary and Editor of its publications. He was the recipient of many awards, a Fellow and Honorary Life Member, and President of the Society.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences.

Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, “Two-Dimensional Transition Metal Carbides”, ACS Nano, Vol 6, No. 2, 1322-1331, 2012

Abstract

Secondary electron SEM micrographs for (A) Ti3AlC2 particle before treatment, which is typical of unreacted MAX phases, (B) Ti3AlC2 after HF treatment, (C) Ti2AlC after HF treatment, (D) Ta4AlC3 after HF treatment, (E) TiNbAlC after HF treatment, and (F) Ti3AlCN after HF treatment. In (B–F), the exfoliation is obvious.Herein we report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Herein we present evidence for the exfoliation of the following MAX phases: Ti2AlC, Ta4AlC3, (Ti0.5,Nb0.5)2AlC, (V0.5,Cr0.5)3AlC2, and Ti3AlCN by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication. The removal of the “A” group layer from the MAX phases results in 2-D layers that we are labeling MXenes to denote the loss of the A element and emphasize their structural similarities with graphene. The sheet resistances of the MXenes were found to be comparable to multilayer graphene. Contact angle measurements with water on pressed MXene surfaces showed hydrophilic behavior.

Keywords: MXene; two-dimensional materials; carbides; carbonitrides; exfoliation

Two-dimensional (2-D) materials, such as graphene, are known to have unique properties that, in turn, can potentially lead to some promising applications. Over the years, other 2-D materials with different chemistries have been synthesized by exfoliation of layered 3-D precursors such as boron nitride, metal chalcogenides (e.g., MoS2, WS2, oxides, and hydroxides). In most, if not all, of these cases, the initial bonding between the layers was relatively weak, making the structure amenable to exfoliation.

 

 

News from MRC.ORG.UA

Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes. 

 
Yury Gogotsi is the most influential scientist of modern Ukraine

altThe life of Yury Gogotsi is a constant back and forth between the top laboratories in the world, writing articles in the best scientific journals and research materials that can change the world around them.