Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors

Schematic of the operation of an EFC system. Slurries are charged in the flow cellNovel electrical energy storage concept, the electrochemical flow capacitor (EFC), holds much promise for grid-scale energy storage applications.

The EFC combines the principles behind the  operation of flow batteries and supercapacitors, and enables rapid charging/discharging and decoupled energy/power ratings. Electrical charge is stored in a flowable carbon slurry composed of low-cost and abundantly available carbon particles in pH-neutral, aqueous electrolyte.

Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors
Jonathan W. Campos, Majid Beidaghi, Kelsey B. Hatzell, Christopher R. Dennison, b, Benjamin Musci, Volker Presser, c, Emin C. Kumbur, Yury Gogotsi
http://dx.doi.org/10.1016/j.electacta.2013.03.037

Novel electrical energy storage concept, the electrochemical flow capacitor (EFC), holds much promise for grid-scale energy storage applications. The EFC combines the principles behind the     Carbon Slurry;     Electrochemical Flow Capacitor;     Flow Battery;     Supercapacitor operation of flow batteries and supercapacitors, and enables rapid charging/discharging and decoupled energy/power ratings. Electrical charge is stored in a flowable carbon slurry composed of low-cost and abundantly available carbon particles in pH-neutral, aqueous electrolyte.

Charge storage and transfer is analogous to solid carbon electrodes in conventional supercapacitors. Here, the effects of carbon particle solid fraction, shape, and size on the electrochemical and rheological properties of slurry electrodes are investigated. A static cell configuration is utilized for studying the electrochemical properties of the flowable electrodes.

The electrochemical properties of the slurry electrodes tested in a static cell are found to be similar to that of solid electrodes in conventional supercapacitors for both, large spherical and anisometric activated carbons. Flow properties of the slurry electrodes are obtained for shear rates corresponding to pumping shear rates by rheometry. Results indicate that electrochemical and rheological properties of slurries depend on their concentration, shape and size of the carbon particles used in the slurries. For a range of concentrations, slurries based on spherical carbon particles show lower viscosities compared to anisometric activated carbon based slurries while performing similar electrochemically.

 

Fig. 2. (a-d) SEM micrographs of (a) CB1, (b) CB2, (c) CB3 and (d) AC, and (e) pore size distributions of the porous carbon materials used in this study.

 

Fig. 3. (a) Dependency of the average specific capacitance calculated from cyclic voltammetry (CV) on solid fraction of carbon particles; error bars show the standard deviation. The Cyclic voltammograms of carbon beads (CB) and activated carbon (AC) slurries (in 1 M Na2SO4) charged from 0 V to 0.75 V show capacitive behavior as demonstrated by rectangular shapes at low scan rates. CVs were recorded at (b) 5 mV s−1, (c) 20 mV s−1, and (d) 10 mV s−1.

 

Fig. 4. Specific capacitances at varying solid fractions (see legend in a) for scan rates from 2-100 mV s−1 calculated by CV for (a) CB1, (b) CB2, (c) CB3, and (d) AC.

 

Fig. 5. (a,b) Fifth galvanostatic cycle (200 mA g−1) after pre-cycling shows low resistance and symmetry of bead and AC slurries. (c) Dependency of the average specific capacitance and (d) ESR on solid fraction of porous carbon calculated from GC.

 

Fig. 6. Cyclic voltammograms of 23 wt% CB2 slurry charging to 0.9 - 1.5 V at 10 mV s−1. Coulombic efficiency drops slightly from 99.2 to 98.5% for the extended voltage window.Fig. 8. Rheograms of slurry electrodes, 20 and 23 wt% solid, in 1 M Na2SO4 with fits to raw data. Shear rates for a flow rate of 1-10 mL min−1 in the current lab scale EFC range from 40-400 s−1.

 

 

 

 

 

RELATED ITEМS:

The electrochemical flow capacitor for grid-scale energy storage

 

Electrochemical Flow Cells for Rapid Energy Storage and Recovery

 

 

 

 

 

 

 

 

 

 

 

News from MRC.ORG.UA

Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Schematic of the cell configuration when the thickness of the electrode increases from 200 mm to 800mmMRC team (Materials Research Centre, Kiev, Ukraine) and research groups from Jilin University (Changchun, Cnina) and Drexel University (Philadelphia, USA) presented breakthrough research on increasing the specific capacity for high-power supercapacitors with coarse-grained carbon electrodes and thickness up to 800 μm, recently published in Electrochimica Acta. In this work, they reported on the trends in capacitance change for coarse-grained CDC and AC electrodes with the thickness from 200 to 800 mm.

 
NANOGUARD2AR Project Workshop: 29-30 January, 2019 Lisbon, Portugal Safety and Regulation of the Engineering Nanomaterials, 29-30 January, 2019 Lisbon, Portugal

altThe aim of the NANOGUARD2AR project 3rd Workshop is to discuss current the state-of-the-art on Safety of the Nanomaterials Application to the Indoor Air Quality Control, including green building concept and overall progress with Engineering Nanomaterials Regulation in EU and worldwide

 
Congratulations to Professor Yury Gogotsi with being elected as Fellow of the European Academy of Sciences!

professor Yury Gogotsi, Drexel UniversityIn January 2019 Professor Yury Gogotsi was elected as a Fellow of the European Academy of Sciences (EURASC).

Professor Yury Gogotsi is a leading Ukrainian and American scientist in the field of material chemistry, professor at Drexel University, Philadelphia, PA since the year 2000 in the fields of Materials Science and Engineering and Nanotechnology.

 
ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else. It was love at first sight for Yury Gogotsi. 

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”. He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

 
NANO2DAY project: Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018

altDue to the NANO2DAY project under european scientific  research program HORIZON 2020 Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018. 

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi and Veronika Zahorodna visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018

alt

NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi (MRC project leader) and Veronika Zahorodna (early-staged researcher, in the framework of international scientific cooperation on the Horizon 2020 program, visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018 in accordance with the travel plan on the project to perform planned project activities.

 
MRC director Oleksiy Gogotsi at the work meeting in Drexel University, Philadelphia, USA, made a presentation of the company and its activitties in international r&d projects

altDirector of Materials Research Centre (Kiev, Ukraine) Oleksiy Gogotsi  at the work meeting in Drexel University, Philadelphia, USA, made a  presentation of the company and its activitties in international research and development projects. Also Oleksiy Gogotsi presented HORIZON 2020 MSCA RISE Project №777810 NANO2DAY: MULTIFUNCTIONAL POLYMER COMPOSITES DOPED WITH NOVEL 2D NANOPARTICLES FOR ADVANCED APPLICATIONS.

 
Seminar on 2D Materials Beyond Graphene by prof. Zdenek Sofer University of Chemistry and Technology (Prague) at Drexel University, USA, on October 18, 2018

altDuring NANO2DAY project visit  to Drexel University (Philadelphia, USA), director of Materials Research Centre (kiev, Ukraine) Oleksiy Gogotsi met with Assoc. Prof. Zdeněk Sofer from University of Chemistry and Technology, Prague (Chech Republic) and attended his seminar on nanomaterials. Prof. Zdenek Sofer in Drexel University gave an excellent seminar on 2D Materials Beyond Graphene.

 
NANO2DAY project: research scientist Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018

NANO2DAY project Maksym Plakhotnyuk, DTU visited MRC, November 2018Due to the NANO2DAY project under european scientific  research program HORIZON 2020 research scientist  Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018. 

 
Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.

 
Spray-On Antennas Could Be the Tech Connector of the Future

Invisibly thin MXene antennas can be applied to a variety of substrates and perform better than antenna materials currently used in mobile devices.

Now, researchers at Drexel University have developed a method for creating nearly invisible antennas on almost any surface by literally spraying them on like paint. The antennas are made from a special two-dimensional metallic material called MXene. MXene powder can be dissolved in water to create a paint that is then airbrushed on. In tests, even a layer as thin as just 62 nanometers – thousands of times thinner than a sheet of paper – could communicate effectively. Performance maxed out at just 8 microns, a point at which the spray-on antennas worked just as well as those currently used in mobile devices and wireless routers.

 
Congratulations to professor Yury Gogotsi, professor Rodney S. Ruoff and professor Patrice Simon with being named by Clarivate Analythics among of the 17 most cited and influenced world-class scientists in 2018!

Professor Yury GogotsiThis designation celebrates researchers whose influence is comparable to that of Nobel Prize recipients, as attested by exceptionally high citation records within the Web of Science. 

 
15th YES Annual Meeting: “The Next Generation of Everything” September 13 – 15, 2018

alt

Yalta European Strategy (YES)  introduced nightcap events for the participants of the 15th YES Annual Meeting to wind down at the end of the first conference day and discuss interesting topics in an informal atmosphere. YES invited leading politicians, opinion makers and business leaders to present their views on modern trends that define the world and Ukraine. The nightcaps were organized in partnership with the U.S. Embassy in Ukraine and America House, International Renaissance Foundation, Ukrainian-Jewish Encounter and the Atlantic Council, Mejlis of the Crimean Tatar people and Ministry of Information Policy of Ukraine, Western NIS Enterprise Fund and Embassy of the Republic of Estonia.

 
2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, September 09-14, 2018

2018 IEEE International Conference on “Nanomaterials Applications & Properties”At the poster session of the conference Oleksiy Gogotsi presented two poster presentations on advanced nanomaterials for different applications, prepared with colleagues from Drexel University, USA, and Jilin University, China

 
NANO2DAY project participants Oleksiy Gogotsi and Veronika Zahorodna visited Polymer Institute SAS, Bratislava, Slovakia, July-September 2018

altNANO2DAY project participants from Materials Research Centre, Kiev, Ukraine, MRC director and project leader Oleksiy Gogotsi and ESR Veronika Zahorodna are working in Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia under the project secondments plan.