MXene is one of the most sensitive gas sensors ever reported

Researchers have discovered that a two-dimensional, metallic material called MXene, which was developed at Drexel, can be used to improve sensors that detect chemicals in the air.In research, recently published in the American Chemical Society journal ACS Nano, the team describes how a two-dimensional, metallic material called MXene can be used as a highly sensitive detector of gaseous chemicals. The paper suggests that MXene can pick up chemicals, such as ammonia and acetone, which are indicators of ulcers and diabetes, in much lower traces than sensors currently being used in medical diagnostics.

“MXene is one of the most sensitive gas sensors ever reported. This research is significant because it expands the range for detection of common gases allowing us to detect very low concentrations that we were not able to detect before,” said Yury Gogotsi, PhD, Distinguished University and Bach Professor in Drexel’s College of Engineering, who was a lead Drexel author of the study. “The high sensitivity of the device may be used for detecting toxic gases or pollutants found in our environment.”

MXene gas sensors

Gogotsi’s Nanomaterials Research Group, from Drexel’s Department of Materials Science and Engineering, teamed with Hee-Tae Jung, PhD, a professor at KAIST in Daejeon, South Korea to explore the gas-sensing properties of titanium carbide MXene. The key to its excellent scent-sleuthing capabilities is that MXene is both highly conductive and undergoes a measurable change of electrical conductivity in the presence of the chemical it’s designed to detect — and only when that particular chemical is present.

This discernment is called “signal-to-noise” ratio in the world of chemical sensors and it is used to rank the quality of sensors — picking up more signal and less noise is the goal. The ones in use today — mostly in medical settings to detect chemicals like acetone, ethanol and propanol, or in breathalyzers to detect alcohol — have a signal-to-noise ratio between 3-10, MXene’s is between 170 and 350, depending on the chemical.

MXene sensors

“If the material can respond to gases by giving a strong signal, while simultaneously being conductive and achieving low electrical noise, the sensor can detect gases at very low concentrations because the signal-to-noise ratio is high — this is clearly the case with MXene,” Gogotsi said. “MXene can detect gases in the 50-100 parts per billion ranges, which is below the concentration necessary for current sensors to detect diabetes and a number of other health conditions.”

This level of sensitivity could be extremely important for detection of disease. In addition to ulcers and diabetes, breath analysis is currently being developed for early diagnosis of multiple types of cancer, cirrhosis, multiple sclerosis and kidney disease. If the chemical indicators for these diseases can be spotted in lower concentrations they are more likely to be diagnosed and treated at earlier stages.

MXene’s advantage over conventional sensor materials lies in its porous structure and chemical composition. The material is good at both allowing gas molecules to move across its surface and snagging, or adsorbing, certain ones that are chemically attracted to it, showing good selectivity.

Gogotsi’s team has been exploring MXenes since the material’s discovery at Drexel in 2011. The group has been able to create and study more than two dozen different chemical compositions for the material, which means they could be used to create sensors for a very wide variety of gasses.

In the future, Gogotsi suggests, MXene sensors could play an important role in environmental monitoring, energy harvesting and storage, as well as health care.

“The next step to advance this research will be to develop sensor sensitivity to different types of gases and improve the detection selectivity between different gases,” Gogotsi said. “We can also imagine personal sensors that will be in our smart phones or fitness trackers, monitoring body functions and the environment while we work, sleep or exercise, accessible with a tap of a finger. Improving the detection sensitivity with new materials is the first step toward making these devices a reality.”

Paper describing this research was selected as Editors’ Choice (less than 1% of articles published by ACS get this honor) and published as an Open Access article: https://pubs.acs.org/doi/10.1021/acsnano.7b07460

Source: http://drexel.edu/now/archive/2018/February/MXene-gas-sensor/

 

 

News from MRC.ORG.UA

Opening of the 2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes was opened on May 10, 2019 at Beijing University of Chemical Technology.

 
2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes will be held in Beijing, China on May 10-12, 2019. The conference is hosted and organized by Beijing University of Chemical Technology. 

 
Project Meeting and Workshop under Horizon-2020 MSCA RISE CanBioSE project, 17-18 th of April 2019, Vilnius, Lithuania

altResearch team of Materials Research Centre led by Oleksiy Gogotsi take part in CanBioSe project meeting and Workshop held in Vilnius University, Vilnus, Lithuania. MRC team met with another CanBioSe project participants, presented MRC company. Also MRC director gave a talk on 2d materials MXenes and their possible applications.

 
MRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019, 2-5 April, 2019

altMRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019 to learn more about last trends in polymer and coating industry and to discuss with conference participants actual questions and present their NANO2DAY research project.

 
Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Schematic of the cell configuration when the thickness of the electrode increases from 200 mm to 800mmMRC team (Materials Research Centre, Kiev, Ukraine) and research groups from Jilin University (Changchun, Cnina) and Drexel University (Philadelphia, USA) presented breakthrough research on increasing the specific capacity for high-power supercapacitors with coarse-grained carbon electrodes and thickness up to 800 μm, recently published in Electrochimica Acta. In this work, they reported on the trends in capacitance change for coarse-grained CDC and AC electrodes with the thickness from 200 to 800 mm.

 
Seminar on Novel 2D materials MXenes: Synthesis and applications, Institute of Physics, Kiev, Ukraine, February 13, 2019

altDirector of Materials Research Centre Oleksiy Gogotsi was invited by professor Galina Dovbeshko, to take part in scientific discussion and seminar, held at the Department of Physics of Biological Systems, Institute of Physics National Academy of Sciences of Ukraine. He gave a seminar lecture on synthesis and properties of novel two-dimensional material MXene. Also Oleksiy Gogotsi presented current research MSCA RISE project NANO2DAY where MRC is participating with MXene expertise.

 
NANOGUARD2AR Project Workshop: 29-30 January, 2019 Lisbon, Portugal Safety and Regulation of the Engineering Nanomaterials, 29-30 January, 2019 Lisbon, Portugal

altThe aim of the NANOGUARD2AR project 3rd Workshop is to discuss current the state-of-the-art on Safety of the Nanomaterials Application to the Indoor Air Quality Control, including green building concept and overall progress with Engineering Nanomaterials Regulation in EU and worldwide

 
Congratulations to Professor Yury Gogotsi with being elected as Fellow of the European Academy of Sciences!

professor Yury Gogotsi, Drexel UniversityIn January 2019 Professor Yury Gogotsi was elected as a Fellow of the European Academy of Sciences (EURASC).

Professor Yury Gogotsi is a leading Ukrainian and American scientist in the field of material chemistry, professor at Drexel University, Philadelphia, PA since the year 2000 in the fields of Materials Science and Engineering and Nanotechnology.

 
ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else. It was love at first sight for Yury Gogotsi. 

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”. He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

 
NANO2DAY project: Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018

altDue to the NANO2DAY project under european scientific  research program HORIZON 2020 Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018. 

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi and Veronika Zahorodna visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018

alt

NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi (MRC project leader) and Veronika Zahorodna (early-staged researcher, in the framework of international scientific cooperation on the Horizon 2020 program, visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018 in accordance with the travel plan on the project to perform planned project activities.

 
MRC director Oleksiy Gogotsi at the work meeting in Drexel University, Philadelphia, USA, made a presentation of the company and its activitties in international r&d projects

altDirector of Materials Research Centre (Kiev, Ukraine) Oleksiy Gogotsi  at the work meeting in Drexel University, Philadelphia, USA, made a  presentation of the company and its activitties in international research and development projects. Also Oleksiy Gogotsi presented HORIZON 2020 MSCA RISE Project №777810 NANO2DAY: MULTIFUNCTIONAL POLYMER COMPOSITES DOPED WITH NOVEL 2D NANOPARTICLES FOR ADVANCED APPLICATIONS.

 
Seminar on 2D Materials Beyond Graphene by prof. Zdenek Sofer University of Chemistry and Technology (Prague) at Drexel University, USA, on October 18, 2018

altDuring NANO2DAY project visit  to Drexel University (Philadelphia, USA), director of Materials Research Centre (kiev, Ukraine) Oleksiy Gogotsi met with Assoc. Prof. Zdeněk Sofer from University of Chemistry and Technology, Prague (Chech Republic) and attended his seminar on nanomaterials. Prof. Zdenek Sofer in Drexel University gave an excellent seminar on 2D Materials Beyond Graphene.

 
NANO2DAY project: research scientist Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018

NANO2DAY project Maksym Plakhotnyuk, DTU visited MRC, November 2018Due to the NANO2DAY project under european scientific  research program HORIZON 2020 research scientist  Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018. 

 
Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.