Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.
The Triangle: How do MXene’s help decrease charging time for batteries?
Yury Gogotsi: MXenes have very high electronic conductivity, like metals. Therefore, large currents can be passed through MXene electrodes. Conventional battery materials (ceramics or graphitic carbons) are relatively poor conductors, so if a large current is applied for quick charging, they heat up and fail.
The second reason for the fast charging of MXene electrodes is that ions required for charge storage can move quickly between flat layers of two-dimensional MXenes, while transport of ions in dense particles or in nanometer-size pores of porous carbon is much slower. When both ions and electrons can be delivered quickly, fast charging becomes possible.
TT: How much capacity do you think can be achieved by a fast-charging MXene battery? (For example, Can a battery made purely of MXene’s be used to power a cell phone? A car? An entire building?)
YG: We don’t know yet. We are acquiring fundamental knowledge needed to make storage devices with MXenes — partially or completely. Usually, if you win in power, you have to sacrifice energy. In our paper, we describe only one electrode. We need to develop a counter-electrode of either a different MXene or another material (every energy storage device has a cathode and an anode), design the device, test it, optimize and so on.
It may appear that high-power conductive MXenes can be combined (hybridized) with high-energy storage materials, such as oxides to increase the total amount of energy stored. So there is still a long way to go. We can speculate that MXene-based energy storage devices (batteries or supercapacitors) can find applications in personal electronics first, and then move towards large-scale storage, as prices decrease due to the economy of scale.
TT: What is the future of MXene’s? Do you see the technology being licensed or sold to major battery manufacturers (Duracell, Panasonic, Tesla, etc.)?
YG: We believe that the future of these Drexel-born materials is very bright, as they may find applications in lasers, transparent conductive coatings on screens of cellphones and TV displays, electromagnetic interference shielding for cell phones and other electronic devices, structural composites, water desalination, medicine (sensing and cancer treatment), and potentially many other fields. Hundreds of researchers around the world are exploring these and other applications.
TT: What was the timeline for this project like? When did you originally come up with the idea and how long did it take for the idea to actually come to fruition?
YG: This particular work took about two years from the beginning to publication. However, it was built on two years of previous experience. We published the first paper on capacitance of MXenes in Science magazine in 2013. My former doctoral student Maria Lukatskaya was the first one to show that MXenes can act as electrodes of pseudocapacitors (devices like batteries, but with a much much lower energy density and faster charge-discharge rates).
After several years of studies dedicated to better understanding of the charge storage mechanism and designing various electrode architectures, she was able to launch this study. However, she graduated more than a year ago, so it took us a while to finish the work and bring the result to publication in one of the top journals in the energy field. Maria is now a postdoctoral fellow at Stanford University, but she kept working on the paper with full dedication to bring the work to publication.
TT: What was the most interesting thing about this project for you?
YG: Feeling of discovery, finding something new almost every day. Working on MXenes, we discover new materials, we learn about their properties — we are exploring a totally new ground and this is what drives me, my students and postdoctoral fellows, and our numerous collaborators at Drexel and elsewhere.
TT: How novel is this MXene technology?
YG: MXenes were discovered at Drexel university in 2011. Michael Naguib, a materials science and engineering doctoral student advised by Prof. Michel Barsoum and myself, produced the first few two-dimensional (like graphene) carbides and carbonitrides, which we named MXenes. M stands for a transition metal, such as titanium, vanadium or other, and X stands for carbon or nitrogen.
By now, more than 20 MXenes have been reported by researchers at Drexel and elsewhere and millions of compositions are theoretically predicted. The are more than 200 research groups around the world working and publishing on MXenes, and the volume of knowledge generated by the research community is growing quickly. Therefore, we believe that practical applications will emerge within the next couple of years.

Source:  http://thetriangle.org/news/triangle-talks-yury-gogotsi/

 

News from MRC.ORG.UA

Opening of the 2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes was opened on May 10, 2019 at Beijing University of Chemical Technology.

 
2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes will be held in Beijing, China on May 10-12, 2019. The conference is hosted and organized by Beijing University of Chemical Technology. 

 
Project Meeting and Workshop under Horizon-2020 MSCA RISE CanBioSE project, 17-18 th of April 2019, Vilnius, Lithuania

altResearch team of Materials Research Centre led by Oleksiy Gogotsi take part in CanBioSe project meeting and Workshop held in Vilnius University, Vilnus, Lithuania. MRC team met with another CanBioSe project participants, presented MRC company. Also MRC director gave a talk on 2d materials MXenes and their possible applications.

 
MRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019, 2-5 April, 2019

altMRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019 to learn more about last trends in polymer and coating industry and to discuss with conference participants actual questions and present their NANO2DAY research project.

 
Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Schematic of the cell configuration when the thickness of the electrode increases from 200 mm to 800mmMRC team (Materials Research Centre, Kiev, Ukraine) and research groups from Jilin University (Changchun, Cnina) and Drexel University (Philadelphia, USA) presented breakthrough research on increasing the specific capacity for high-power supercapacitors with coarse-grained carbon electrodes and thickness up to 800 μm, recently published in Electrochimica Acta. In this work, they reported on the trends in capacitance change for coarse-grained CDC and AC electrodes with the thickness from 200 to 800 mm.

 
Seminar on Novel 2D materials MXenes: Synthesis and applications, Institute of Physics, Kiev, Ukraine, February 13, 2019

altDirector of Materials Research Centre Oleksiy Gogotsi was invited by professor Galina Dovbeshko, to take part in scientific discussion and seminar, held at the Department of Physics of Biological Systems, Institute of Physics National Academy of Sciences of Ukraine. He gave a seminar lecture on synthesis and properties of novel two-dimensional material MXene. Also Oleksiy Gogotsi presented current research MSCA RISE project NANO2DAY where MRC is participating with MXene expertise.

 
NANOGUARD2AR Project Workshop: 29-30 January, 2019 Lisbon, Portugal Safety and Regulation of the Engineering Nanomaterials, 29-30 January, 2019 Lisbon, Portugal

altThe aim of the NANOGUARD2AR project 3rd Workshop is to discuss current the state-of-the-art on Safety of the Nanomaterials Application to the Indoor Air Quality Control, including green building concept and overall progress with Engineering Nanomaterials Regulation in EU and worldwide

 
Congratulations to Professor Yury Gogotsi with being elected as Fellow of the European Academy of Sciences!

professor Yury Gogotsi, Drexel UniversityIn January 2019 Professor Yury Gogotsi was elected as a Fellow of the European Academy of Sciences (EURASC).

Professor Yury Gogotsi is a leading Ukrainian and American scientist in the field of material chemistry, professor at Drexel University, Philadelphia, PA since the year 2000 in the fields of Materials Science and Engineering and Nanotechnology.

 
ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else. It was love at first sight for Yury Gogotsi. 

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”. He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

 
NANO2DAY project: Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018

altDue to the NANO2DAY project under european scientific  research program HORIZON 2020 Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018. 

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi and Veronika Zahorodna visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018

alt

NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi (MRC project leader) and Veronika Zahorodna (early-staged researcher, in the framework of international scientific cooperation on the Horizon 2020 program, visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018 in accordance with the travel plan on the project to perform planned project activities.

 
MRC director Oleksiy Gogotsi at the work meeting in Drexel University, Philadelphia, USA, made a presentation of the company and its activitties in international r&d projects

altDirector of Materials Research Centre (Kiev, Ukraine) Oleksiy Gogotsi  at the work meeting in Drexel University, Philadelphia, USA, made a  presentation of the company and its activitties in international research and development projects. Also Oleksiy Gogotsi presented HORIZON 2020 MSCA RISE Project №777810 NANO2DAY: MULTIFUNCTIONAL POLYMER COMPOSITES DOPED WITH NOVEL 2D NANOPARTICLES FOR ADVANCED APPLICATIONS.

 
Seminar on 2D Materials Beyond Graphene by prof. Zdenek Sofer University of Chemistry and Technology (Prague) at Drexel University, USA, on October 18, 2018

altDuring NANO2DAY project visit  to Drexel University (Philadelphia, USA), director of Materials Research Centre (kiev, Ukraine) Oleksiy Gogotsi met with Assoc. Prof. Zdeněk Sofer from University of Chemistry and Technology, Prague (Chech Republic) and attended his seminar on nanomaterials. Prof. Zdenek Sofer in Drexel University gave an excellent seminar on 2D Materials Beyond Graphene.

 
NANO2DAY project: research scientist Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018

NANO2DAY project Maksym Plakhotnyuk, DTU visited MRC, November 2018Due to the NANO2DAY project under european scientific  research program HORIZON 2020 research scientist  Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018. 

 
Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.