Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.
The Triangle: How do MXene’s help decrease charging time for batteries?
Yury Gogotsi: MXenes have very high electronic conductivity, like metals. Therefore, large currents can be passed through MXene electrodes. Conventional battery materials (ceramics or graphitic carbons) are relatively poor conductors, so if a large current is applied for quick charging, they heat up and fail.
The second reason for the fast charging of MXene electrodes is that ions required for charge storage can move quickly between flat layers of two-dimensional MXenes, while transport of ions in dense particles or in nanometer-size pores of porous carbon is much slower. When both ions and electrons can be delivered quickly, fast charging becomes possible.
TT: How much capacity do you think can be achieved by a fast-charging MXene battery? (For example, Can a battery made purely of MXene’s be used to power a cell phone? A car? An entire building?)
YG: We don’t know yet. We are acquiring fundamental knowledge needed to make storage devices with MXenes — partially or completely. Usually, if you win in power, you have to sacrifice energy. In our paper, we describe only one electrode. We need to develop a counter-electrode of either a different MXene or another material (every energy storage device has a cathode and an anode), design the device, test it, optimize and so on.
It may appear that high-power conductive MXenes can be combined (hybridized) with high-energy storage materials, such as oxides to increase the total amount of energy stored. So there is still a long way to go. We can speculate that MXene-based energy storage devices (batteries or supercapacitors) can find applications in personal electronics first, and then move towards large-scale storage, as prices decrease due to the economy of scale.
TT: What is the future of MXene’s? Do you see the technology being licensed or sold to major battery manufacturers (Duracell, Panasonic, Tesla, etc.)?
YG: We believe that the future of these Drexel-born materials is very bright, as they may find applications in lasers, transparent conductive coatings on screens of cellphones and TV displays, electromagnetic interference shielding for cell phones and other electronic devices, structural composites, water desalination, medicine (sensing and cancer treatment), and potentially many other fields. Hundreds of researchers around the world are exploring these and other applications.
TT: What was the timeline for this project like? When did you originally come up with the idea and how long did it take for the idea to actually come to fruition?
YG: This particular work took about two years from the beginning to publication. However, it was built on two years of previous experience. We published the first paper on capacitance of MXenes in Science magazine in 2013. My former doctoral student Maria Lukatskaya was the first one to show that MXenes can act as electrodes of pseudocapacitors (devices like batteries, but with a much much lower energy density and faster charge-discharge rates).
After several years of studies dedicated to better understanding of the charge storage mechanism and designing various electrode architectures, she was able to launch this study. However, she graduated more than a year ago, so it took us a while to finish the work and bring the result to publication in one of the top journals in the energy field. Maria is now a postdoctoral fellow at Stanford University, but she kept working on the paper with full dedication to bring the work to publication.
TT: What was the most interesting thing about this project for you?
YG: Feeling of discovery, finding something new almost every day. Working on MXenes, we discover new materials, we learn about their properties — we are exploring a totally new ground and this is what drives me, my students and postdoctoral fellows, and our numerous collaborators at Drexel and elsewhere.
TT: How novel is this MXene technology?
YG: MXenes were discovered at Drexel university in 2011. Michael Naguib, a materials science and engineering doctoral student advised by Prof. Michel Barsoum and myself, produced the first few two-dimensional (like graphene) carbides and carbonitrides, which we named MXenes. M stands for a transition metal, such as titanium, vanadium or other, and X stands for carbon or nitrogen.
By now, more than 20 MXenes have been reported by researchers at Drexel and elsewhere and millions of compositions are theoretically predicted. The are more than 200 research groups around the world working and publishing on MXenes, and the volume of knowledge generated by the research community is growing quickly. Therefore, we believe that practical applications will emerge within the next couple of years.

Source:  http://thetriangle.org/news/triangle-talks-yury-gogotsi/

 

News from MRC.ORG.UA

Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.

 
Spray-On Antennas Could Be the Tech Connector of the Future

Invisibly thin MXene antennas can be applied to a variety of substrates and perform better than antenna materials currently used in mobile devices.

Now, researchers at Drexel University have developed a method for creating nearly invisible antennas on almost any surface by literally spraying them on like paint. The antennas are made from a special two-dimensional metallic material called MXene. MXene powder can be dissolved in water to create a paint that is then airbrushed on. In tests, even a layer as thin as just 62 nanometers – thousands of times thinner than a sheet of paper – could communicate effectively. Performance maxed out at just 8 microns, a point at which the spray-on antennas worked just as well as those currently used in mobile devices and wireless routers.

 
Congratulations to professor Yury Gogotsi, professor Rodney S. Ruoff and professor Patrice Simon with being named by Clarivate Analythics among of the 17 most cited and influenced world-class scientists in 2018!

Professor Yury GogotsiThis designation celebrates researchers whose influence is comparable to that of Nobel Prize recipients, as attested by exceptionally high citation records within the Web of Science. 

 
15th YES Annual Meeting: “The Next Generation of Everything” September 13 – 15, 2018

alt

Yalta European Strategy (YES)  introduced nightcap events for the participants of the 15th YES Annual Meeting to wind down at the end of the first conference day and discuss interesting topics in an informal atmosphere. YES invited leading politicians, opinion makers and business leaders to present their views on modern trends that define the world and Ukraine. The nightcaps were organized in partnership with the U.S. Embassy in Ukraine and America House, International Renaissance Foundation, Ukrainian-Jewish Encounter and the Atlantic Council, Mejlis of the Crimean Tatar people and Ministry of Information Policy of Ukraine, Western NIS Enterprise Fund and Embassy of the Republic of Estonia.

 
2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, September 09-14, 2018

2018 IEEE International Conference on “Nanomaterials Applications & Properties”At the poster session of the conference Oleksiy Gogotsi presented two poster presentations on advanced nanomaterials for different applications, prepared with colleagues from Drexel University, USA, and Jilin University, China

 
NANO2DAY project participants Oleksiy Gogotsi and Veronika Zahorodna visited Polymer Institute SAS, Bratislava, Slovakia, July-September 2018

altNANO2DAY project participants from Materials Research Centre, Kiev, Ukraine, MRC director and project leader Oleksiy Gogotsi and ESR Veronika Zahorodna are working in Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia under the project secondments plan.

 
NANO2DAY project: Professor Maria Omastova, Polymenr Institue Slovak Academy of Science, visited Materials Research Centre, Kiev, Ukraine, July-August 2018

Professor Maria Omastova, Polymer Institute SAV, Bratislava, Slovakia, and Oleksiy Gogotsi, director of Materials Research Centre, Kiev, Ukraine,  July 2018Professor Omastova was acquainted with the activities and research infrastructure of MRC project partner, she held several seminars on polymer composites and talked about the experience and developments of her institute. 

 
The 6th International Conference on Novel Functional Carbon Nanomaterials at the 8th Forum on New Materials (CIMTEC 2018) in Perugia, Italy, June 11-14

Фото Yury Gogotsi.The 6th International Conference “Novel Functional Carbon Nanomaterials”within the 8th Forum on New Materials at CIMTEC 2018 held in Perugia, Italy,  highlighted recent achievements and challenges in the synthesis, structural control and modeling at the meso- and nano-scales of the variety of low-dimensional carbon allotropes including nanodiamonds, diamond-like carbon, fullerenes, nanotubes, graphene and graphene-related structures, as well as high surface area carbon networks, which are promising for a range of emerging applications in energy conversion and storage, water purification, high-speed nanoelectronics, optoelectronics, photonics, quantum information processing, quantum computing, biosensing, drug delivery, medical imaging, thermal management, catalysis, lubrication, etc.

 
1st International Conference on MXenes at Jilin University, Changchun, China

MXene conference 2018The meeting is the first international conference focusing on MXene materals, which is to bring scientists in the two-dimensional materials or energy area to interact and discuss the advances and challenges in various fields.

 
Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
H2020-MSCA-RISE Nano2Day Kick-off project meeting, Academic Centre of University of Latvia, Riga, 10-11 May 2018

altH2020-MSCA-RISE project „Multifunctional polymer composites doped with novel 2D nanoparticles for advanced applications NANO2DAY” started on May 1, 2018. It is aimed to develop novel multifunctional composites with outstanding electronic and mechanical properties by incorporation of novel MXene nanosheets into polymer matrixes.

 
Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine" as part of the NAU Info Day

horizon2020 семінарOn February 14, 2018, Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine"  as part of the NAU Info Day.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.