Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.
The Triangle: How do MXene’s help decrease charging time for batteries?
Yury Gogotsi: MXenes have very high electronic conductivity, like metals. Therefore, large currents can be passed through MXene electrodes. Conventional battery materials (ceramics or graphitic carbons) are relatively poor conductors, so if a large current is applied for quick charging, they heat up and fail.
The second reason for the fast charging of MXene electrodes is that ions required for charge storage can move quickly between flat layers of two-dimensional MXenes, while transport of ions in dense particles or in nanometer-size pores of porous carbon is much slower. When both ions and electrons can be delivered quickly, fast charging becomes possible.
TT: How much capacity do you think can be achieved by a fast-charging MXene battery? (For example, Can a battery made purely of MXene’s be used to power a cell phone? A car? An entire building?)
YG: We don’t know yet. We are acquiring fundamental knowledge needed to make storage devices with MXenes — partially or completely. Usually, if you win in power, you have to sacrifice energy. In our paper, we describe only one electrode. We need to develop a counter-electrode of either a different MXene or another material (every energy storage device has a cathode and an anode), design the device, test it, optimize and so on.
It may appear that high-power conductive MXenes can be combined (hybridized) with high-energy storage materials, such as oxides to increase the total amount of energy stored. So there is still a long way to go. We can speculate that MXene-based energy storage devices (batteries or supercapacitors) can find applications in personal electronics first, and then move towards large-scale storage, as prices decrease due to the economy of scale.
TT: What is the future of MXene’s? Do you see the technology being licensed or sold to major battery manufacturers (Duracell, Panasonic, Tesla, etc.)?
YG: We believe that the future of these Drexel-born materials is very bright, as they may find applications in lasers, transparent conductive coatings on screens of cellphones and TV displays, electromagnetic interference shielding for cell phones and other electronic devices, structural composites, water desalination, medicine (sensing and cancer treatment), and potentially many other fields. Hundreds of researchers around the world are exploring these and other applications.
TT: What was the timeline for this project like? When did you originally come up with the idea and how long did it take for the idea to actually come to fruition?
YG: This particular work took about two years from the beginning to publication. However, it was built on two years of previous experience. We published the first paper on capacitance of MXenes in Science magazine in 2013. My former doctoral student Maria Lukatskaya was the first one to show that MXenes can act as electrodes of pseudocapacitors (devices like batteries, but with a much much lower energy density and faster charge-discharge rates).
After several years of studies dedicated to better understanding of the charge storage mechanism and designing various electrode architectures, she was able to launch this study. However, she graduated more than a year ago, so it took us a while to finish the work and bring the result to publication in one of the top journals in the energy field. Maria is now a postdoctoral fellow at Stanford University, but she kept working on the paper with full dedication to bring the work to publication.
TT: What was the most interesting thing about this project for you?
YG: Feeling of discovery, finding something new almost every day. Working on MXenes, we discover new materials, we learn about their properties — we are exploring a totally new ground and this is what drives me, my students and postdoctoral fellows, and our numerous collaborators at Drexel and elsewhere.
TT: How novel is this MXene technology?
YG: MXenes were discovered at Drexel university in 2011. Michael Naguib, a materials science and engineering doctoral student advised by Prof. Michel Barsoum and myself, produced the first few two-dimensional (like graphene) carbides and carbonitrides, which we named MXenes. M stands for a transition metal, such as titanium, vanadium or other, and X stands for carbon or nitrogen.
By now, more than 20 MXenes have been reported by researchers at Drexel and elsewhere and millions of compositions are theoretically predicted. The are more than 200 research groups around the world working and publishing on MXenes, and the volume of knowledge generated by the research community is growing quickly. Therefore, we believe that practical applications will emerge within the next couple of years.

Source:  http://thetriangle.org/news/triangle-talks-yury-gogotsi/

 

News from MRC.ORG.UA

Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.