Rus | Eng |
ACS Meetings organizes two of the most respected scientific meetings in the world. American National Meetings offer scientific professionals a legitimate platform to present, publish, discuss and exhibit the most exciting research discoveries and technologies in chemistry and its related disciplines.
247th ACS National Meeting and Exposition facilitated networking opportunities, career development and placement, and provided companies an opportunity to exhibit products and services to a targeted audience.
The Exposition gave attendees the chance to meet more than 250 exhibitors, many of whom were showcasing new technological developments. A number of exhibitors also offered free workshops during the meeting so attendees had possibility to learn more about that state-of-the-art technologies.
PM Session: Nanomaterials for Energy, March 17, 2014 at the Dallas Convention Center
More than 100 ACS National Meeting attendees at each talk during "Nanomaterials for Energy" joint session on March 17, 2014 at the Dallas Convention Center, hosted by ACS Nano and Nano Letters journals.
At that session Yury Gogotsi presented "2D carbides and carbonitrides: A new family of materials for electrochemical energy storage".
2D carbides and carbonitrides: A new family of materials for electrochemical energy storage
Yury Gogotsi, Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
Abstract
Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. They were produced by selective etching of Al from layered ternary transition metal carbides and/or nitrides so called MAX phases. So far, the following MXenes have been synthesized: Ti3C2, Ti2C, Nb2C, V2C, (Ti0.5,Nb0.5)2C, (V0.5,Cr0.5)3C2, Ti3CN, Ta4C3, and Nb4C3. In addition, many others are expected to exist, according to DFT calculations.
MXenes combine the metallic conductivity of transition metal carbide layers with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as “conductive clays”. They are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. For example, flexible additive-free electrodes of delaminated Ti3C2 showed a reversible capacity of 410 mAhg-1 at 1 C rate and 110 mAhg-1 at 36 C in Li-ion battery anode tests.
This excellent capability to handle high cycling rates suggests MXenes to be used also in Li-ion capacitors and supercapacitors. Reversible capacities – stable for more than 10,000 cycles - of more than 330 F/cm3 were achieved when those additive-free Ti3C2based electrodes were tested in a KOH electrolyte, using a current of 1 A/g. Herein we report on the recent progress in the synthesis of MXenes, their properties, and their performance in both lithium ion batteries and electrochemical capacitors.
References:
(1) Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y., MXenes: A New Family of Two-Dimensional Materials, Adv. Mater. 2013, DOI: 10.1002/adma.201304138.
(2) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248.
(3) Naguib,M.; Mashtalir,O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano2012, 6, 1322.
(4) Naguib, M.; Halim, J.; Lu, J.; Cook, K; Hultman, L.; Gogotsi, Y.; and Barsoum, M.W., New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-ion Batteries, J. Am. Chem. Soc.2013, DOI: 10.1021/ja405735d.
(5) Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.
(6) Come, J.; Naguib, M.; Rozier, P.; Barsoum, M. W.; Gogotsi, Y.; Taberna, P.-L.; Morcrette, M.; Simon, P. J. Electrochem. Soc. 2012, 159, A1368.
(7) Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Nat. Commun.2013, 4, 1716.
(8) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502.
Source: www.acs.org