Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes

Rus На русском Eng In English

Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes

Jennifer M. Black1,Guang Feng2,*,Pasquale F. Fulvio3,Patrick C. Hillesheim3,Sheng Dai3,4,Yury Gogotsi5,Peter T. Cummings2,Sergei V. Kalinin1,Nina Balke1,*

1 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2 Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
3 Chemical Sciences Division Oak Ridge National Laboratory, Oak Ridge, TN, USA
4 Department of Chemistry University of Tennessee, Knoxville, TN, USA
5 Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute Drexel University, Philadelphia, PA, USA

Article first published online: 8 OCT 2013, Adv. Energy Mater.,DOI: 10.1002/aenm.201300683

Keywords: electrochemical capacitors; atomic force microscopy; molecular dynamics; ionic liquids


Atomic force microscopy is used to monitor the expansion of porous carbon electrodes, which results from insertion/adsorption of ions in carbon pores during charging. The strain data collected at various potential scan rates are used to obtain information on anion and cation kinetics. Molecular dynamics simulations are performed to determine the molecular origins of charge-induced expansion in porous carbons.

The expansion of porous carbon electrodes in a room temperature ionic liquid (RTIL) is studied using in situ atomic force microscopy (AFM). The effect of carbon surface area and pore size/pore size distribution on the observed strain profile and ion kinetics is examined. Additionally, the influence of the potential scan rate on the strain response is investigated. By analyzing the strain data at various potential scan rates, information on ion kinetics in the different carbon materials is obtained. Molecular dynamics (MD) simulations are performed to compare with and provide molecular insights into the experimental results; this is the first MD work investigating the pressure exerted on porous electrodes under applied potential in a RTIL electrolyte. Using MD, the pressure exerted on the pore wall is calculated as a function of potential/charge for both a micropore (1.2 nm) and a mesopore (7.0 nm). The shape of the calculated pressure profile matches closely with the strain profiles observed experimentally.

Supporting Information

N2 adsorption measurements were performed to determine the surface area and pore size distribution s of the carbon membranes used in this study. Figure S1 a and b show the N2 adsorption isotherms as well as the calculated pore size distributions (PSDs) for the MC, MC - A, and MC - G membranes. These are type IV isotherms with H1 hysteresis loops characteristic of materials with large mesopores. [1]

Figure S1. (a) N2 adsorption isotherms (b) respective calculated pore size distribution and (c) and indentation results of MC, MC-A, and MC-G carbon membranes.

The steepness of the capillary condensation step results from the uniform diameter of the main mesopores and consequently narrow pore size distribution, which i s usually reported for ordered and disordered soft - templated carbon materials. The surface area of the MC, MC - A, and MC - G carbons w ere determined to be 579, 798, and 282 m 2 g - 1 , respectively. Mechanical indentation experiments were also performed to dete rmine the hardness of the carbon membranes, and results are shown in Figure S1c. From the indentation experiments the Young’s modulus for the MC, MC - A, and MC - G w ere determined to be 6.783, 4.586, and 9.655 GPa, respectively.

To compare the strain behavior of a non-porous carbon with the porous carbons used in this study, the charge induced expansion of a non-porous glassy carbon electrode was also measured using in-situ AFM.

Figure S2. Variation of potential (top) and relative height change (bottom) of the MC membrane and a glassy carbon electrode plotted as a function of normalized time for a sweep rate of 1 mVs-1.

Figure S2 shows the relative height change of MC membrane and glassy carbon over three cyclic voltammogram cycles performed at 1 mV s-1. The MC membrane experiences an expansion of ca. 0.15% with the maximum occurring at the most positive and most negative applied potentials. For the glassy carbon electrode the maximum strain observed was very small (<0.001 %), and was unrelated to the potential applied to the electrode. The absence of strain observed in the non-porous glassy carbon provides further support that the expansion experienced in porous carbon materials is related to the ion insertion/adsorption in the carbon pores.

References: [1] X. Q. Wang, Q. Zhu, S. M. Mahurin, C. D. Liang, S. Dai, Carbon, 2010, 48, 557



News from MRC.ORG.UA

Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

Triangle Talks with Yury Gogotsi


Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes. 

Yury Gogotsi is the most influential scientist of modern Ukraine

altThe life of Yury Gogotsi is a constant back and forth between the top laboratories in the world, writing articles in the best scientific journals and research materials that can change the world around them. 

Professor Yury Gogotsi , Drexel University, USA, received an Honorary Doctorate from Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine, June 20, 2017.

Deputy Directors of IPMS NAS professors Dr. Ragulya, Dr. Baglyuk, Mr. Zavorotnyi, Honorary Professor of IPMS NASU Yury Gogotsi,  Scientific Secretary Dr. Kartuzov and Dr. Firstov Professor Yury Gogotsi , Drexel University, USA,  received an Honorary Doctorate from Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine.

Professor Yury Gogotsi was speaking about nanotechnology in energy storage at the World Science Festival 2017

Professor Yury Gogotsi at World Science Festival 2017Join world-class nanoscientists and environmental leaders to explore how the capacity to harness molecules and atoms is accelerating spectacular inventions — including light-weight “wonder materials,” vital energy-storage technologies, and new sources of renewable energy — which promise to redefine the very future of energy.

MXenes are at the forefront of 2D materials research


Research of 2D MXenes is prominently featured in an article in Chemical & Engineering News - bulletin of the American Chemical Society that goes in hard copy to more than 150,000 subscribers. No doubt, MXenes are at the forefront of 2D materials research.

IDEATION Seminars: A New Platform for Innovation Management, Promotion, Licensing, Technology Transfer and Commercialization, June 7 at 14:30, KPI, Kyiv

altSpeakers:  Victor Korsun and Douglas Graham

Nano Iguana became a 1st place winner at 2017 MRS Science as Art Competition

Entry Nano Iguana became a 1st place winner at Science as Art Competition 2017: Nano-anatase (TiO2) crystals decorating graphene-like carbon, fabricated by oxidizing 2d Ti3C2 MXene powder, presented by A. J. Drexel Nanotechnology Institute and Department of Materials Science  and Engineering, Drexel University, USAResearch team from Drexel University lead by professor Yury Gogotsi produced an award-wining entry and became the 1st place winner in Science as Art competition at 2017 MRS Spring meeting in Phoenix.

1st Africa Energy Materials conference, 28 – 31 March 2017, Pretoria, South Africa

1st Africa Energy Materials conference On the first day of the conference, on March 28, the conference participants had an opportunity to attend a plenary lecture "Two-Dimensional Materials for High Rate and High-energy Density Storage" by invited plenary speaker professor Yury Gogotsi, Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University, and Director of the A.J. Drexel Nanomaterials Institute 

Workshop “Nanomaterials – based innovative engineering solution to ensure sustainable safeguard to indoor air “ NANOGUARD2AR 27-28 February, Lisbon, Portugal

altThe goal of the workshop is to attract the most recognized academic experts in the field of Innovative Nanomaterials for Environmental Application to share their knowledge and expertise on nanomaterials, nanoengineering and green building concepts.


Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds

Appointment ceremony of Honorary professorship for prof. Yury Gogotsi, Jilin University, Changchun, China on October 20, 2016

Honorary professor of Jilin University Yury Gogotsi  and Li Yuanyuan, President of Jilin University, academician of the Chinese Academy of Engineering

The official appointment ceremony of Honorary professorship for Dr. Yury Gogotsi took place in a ceremonial atmosphere at Jilin University, Changchun, Jilin Province, China on October 20, 2016.

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII), is held during 14-19 October, 2016 at Hunan Agriculture University together with Nanjing Tech University, Fudan University and University of Technology, Sydney.

Cleaning up electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene

MXene is a nanomaterial that is both thin and light, but also has the unique ability to block and absorb electromagnetic radiation, which makes it the perfect for use as shielding in electronics devices.

 According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material’s atomically thin layers.