Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes

Rus На русском Eng In English

Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes

Jennifer M. Black1,Guang Feng2,*,Pasquale F. Fulvio3,Patrick C. Hillesheim3,Sheng Dai3,4,Yury Gogotsi5,Peter T. Cummings2,Sergei V. Kalinin1,Nina Balke1,*

1 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2 Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
3 Chemical Sciences Division Oak Ridge National Laboratory, Oak Ridge, TN, USA
4 Department of Chemistry University of Tennessee, Knoxville, TN, USA
5 Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute Drexel University, Philadelphia, PA, USA

Article first published online: 8 OCT 2013, Adv. Energy Mater.,DOI: 10.1002/aenm.201300683

Keywords: electrochemical capacitors; atomic force microscopy; molecular dynamics; ionic liquids

Abstract

Atomic force microscopy is used to monitor the expansion of porous carbon electrodes, which results from insertion/adsorption of ions in carbon pores during charging. The strain data collected at various potential scan rates are used to obtain information on anion and cation kinetics. Molecular dynamics simulations are performed to determine the molecular origins of charge-induced expansion in porous carbons.

The expansion of porous carbon electrodes in a room temperature ionic liquid (RTIL) is studied using in situ atomic force microscopy (AFM). The effect of carbon surface area and pore size/pore size distribution on the observed strain profile and ion kinetics is examined. Additionally, the influence of the potential scan rate on the strain response is investigated. By analyzing the strain data at various potential scan rates, information on ion kinetics in the different carbon materials is obtained. Molecular dynamics (MD) simulations are performed to compare with and provide molecular insights into the experimental results; this is the first MD work investigating the pressure exerted on porous electrodes under applied potential in a RTIL electrolyte. Using MD, the pressure exerted on the pore wall is calculated as a function of potential/charge for both a micropore (1.2 nm) and a mesopore (7.0 nm). The shape of the calculated pressure profile matches closely with the strain profiles observed experimentally.

Supporting Information

N2 adsorption measurements were performed to determine the surface area and pore size distribution s of the carbon membranes used in this study. Figure S1 a and b show the N2 adsorption isotherms as well as the calculated pore size distributions (PSDs) for the MC, MC - A, and MC - G membranes. These are type IV isotherms with H1 hysteresis loops characteristic of materials with large mesopores. [1]

Figure S1. (a) N2 adsorption isotherms (b) respective calculated pore size distribution and (c) and indentation results of MC, MC-A, and MC-G carbon membranes.

The steepness of the capillary condensation step results from the uniform diameter of the main mesopores and consequently narrow pore size distribution, which i s usually reported for ordered and disordered soft - templated carbon materials. The surface area of the MC, MC - A, and MC - G carbons w ere determined to be 579, 798, and 282 m 2 g - 1 , respectively. Mechanical indentation experiments were also performed to dete rmine the hardness of the carbon membranes, and results are shown in Figure S1c. From the indentation experiments the Young’s modulus for the MC, MC - A, and MC - G w ere determined to be 6.783, 4.586, and 9.655 GPa, respectively.

To compare the strain behavior of a non-porous carbon with the porous carbons used in this study, the charge induced expansion of a non-porous glassy carbon electrode was also measured using in-situ AFM.

Figure S2. Variation of potential (top) and relative height change (bottom) of the MC membrane and a glassy carbon electrode plotted as a function of normalized time for a sweep rate of 1 mVs-1.

Figure S2 shows the relative height change of MC membrane and glassy carbon over three cyclic voltammogram cycles performed at 1 mV s-1. The MC membrane experiences an expansion of ca. 0.15% with the maximum occurring at the most positive and most negative applied potentials. For the glassy carbon electrode the maximum strain observed was very small (<0.001 %), and was unrelated to the potential applied to the electrode. The absence of strain observed in the non-porous glassy carbon provides further support that the expansion experienced in porous carbon materials is related to the ion insertion/adsorption in the carbon pores.

References: [1] X. Q. Wang, Q. Zhu, S. M. Mahurin, C. D. Liang, S. Dai, Carbon, 2010, 48, 557

 

 

News from MRC.ORG.UA

MATERIAL WITNESSES — RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXEL’S 2D MXENE

Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

 
Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds

 
Appointment ceremony of Honorary professorship for prof. Yury Gogotsi, Jilin University, Changchun, China on October 20, 2016

Honorary professor of Jilin University Yury Gogotsi  and Li Yuanyuan, President of Jilin University, academician of the Chinese Academy of Engineering

The official appointment ceremony of Honorary professorship for Dr. Yury Gogotsi took place in a ceremonial atmosphere at Jilin University, Changchun, Jilin Province, China on October 20, 2016.

 
12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII), is held during 14-19 October, 2016 at Hunan Agriculture University together with Nanjing Tech University, Fudan University and University of Technology, Sydney.

 
Cleaning up electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene

MXene is a nanomaterial that is both thin and light, but also has the unique ability to block and absorb electromagnetic radiation, which makes it the perfect for use as shielding in electronics devices.

 According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material’s atomically thin layers.

 
Beijing University of Chemical Technology awarded prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor

Honorary Professor appointment ceremony at the Beijing University of Chemical TechnologyBeijing University of Chemical Technology have decided to award prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor based on his distinguished academic accomplishments. 

 
Prof. Yury Gogotsi became the winner of 2016 Nano Energy Award!

prof. Yury Gogotsi, Drexel UniversityNano Energy Award was presented to prof. Yury Gogotsi at 2016 Nanoenergy and Nanosystems Conference, which was held in Beijing on 13-15 July 2016.

 
Professor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China

meeting at Jilin UniversityProfessor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China, to meet research partners and discuss work questions and joint cooperation.

 
Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage, Jilin University, China

Director of Materials Research Centre Oleksiy Gogotsi visited interesting seminar lecture of Prof. Yury Gogotsi on MXenes for the students of Jilin University.

June 16, 2016 prof. Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage for the sudents and researchers of Jilin University, Changchun, China.

 
Nature Conference on Materials for Energy 2016

altProf.Yury Gogotsi at the Nature Journals’ Materials for Energy conference gave a talk on Synthesis, Properties And Energy Storage Applications of Two-Dimensional Carbides (Mxenes) in Wuhan University of Technology Conference Centre, Wuhan, China

 
Congratulations to Prof. Gogotsi on winning the 2016 Nano Energy Award

prof. Yury Gogotsi, Drexel UniversityThe award will be presented to prof. Yury Gogotsi at the Nanoenergy and Nanosystems 2016 conference, which will be held in Beijing between 13-15 July 2016.

 
Congratulations to professor Yury Gogotsi for being named a Thomson Reuters 2015 Highly Cited Researcher!

altProfessor Yury Gogotsi have been listed in the 2015 World’s Most Influential Scientific Minds. 

 
Prof. Yury Gogotsi has been admitted as Fellow of the Royal Society of Chemistry (FRSC)

Royal Society of ChemistryProf. Yury Gogotsi has been admitted as Fellow of the Royal Society of Chemistry (FRSC) on December 11, 2015 for his outstanding contribution to chemistry. 

 
Prof. Yury Gogotsi was awarded the Lee Hsun Award Lecture

Prof. Yury Gogotsi was awarded the Lee Hsun Award Lecture at the Institute of Metal Research (IMR) of the Chinese Academy of Sciences on Nov. 5.Prof. Yury Gogotsi was awarded the Lee Hsun Award Lecture at the Institute of Metal Research (IMR) of the Chinese Academy of Sciences on November 5, 2015.

 
Yury Gogotsi and Patrice Simon were announced as the laureates of RUSNANOPRIZE 2015 at the Open Innovations Forum in Moscow, October 28, 2015

Лауреаты премии RUSNANOPRIZE 2015 проф. Юрий Гогоци (Университет Дрекселя, США) и проф. Патрис Симон (Университет Тулузы им. Поля Сабатье, Франция), 28 октября 2015 г.

Winners of the international award RUSNANOPRIZE 2015 became Yury Gogotsi,  professor  of Drexel University (USA), Director of the Institute of nanomaterials Drexel University (USA), and professor of the University Paul Sabatier (France), Patrice Simon for the fundamental studies and development of carbon nanomaterials for electrochemical supercapacitors.