A High Performance Pseudocapacitive Suspension Electrode for the Electrochemical Flow Capacitor

Fig. 1. (a) Operational schematic of the electrochemical flow capacitor. Uncharged slurry flows through polarized plates and charged. At the pore level, electrode neutrality is maintained at the interface between the electrolyte and active material. This slurry is then pumped into external reservoirs for storage. The process is reversed during discharge. (b) Schematic of a carbon|electrolyte interface between charged spherical particles and (c) SEM image of carbon beads.

Publication on the electrochemical flow capacitor (EFC) by nanomaterials group of DNI, Drexel University, USA. EFC is a new technology for grid energy storage that is based on the fundamental principles of supercapacitors.

Fig. 1. (a) Operational schematic of the electrochemical flow capacitor. Uncharged slurry flows through polarized plates and charged. At the pore level, electrode neutrality is maintained at the interface between the electrolyte and active material. This slurry is then pumped into external reservoirs for storage. The process is reversed during discharge. (b) Schematic of a carbon|electrolyte interface between charged spherical particles and (c) SEM image of carbon beads.

Rus На русском Eng In English

Electrochimica Acta,Volume 111, 30 November 2013, Pages 888–897

A High Performance Pseudocapacitive Suspension Electrode for the Electrochemical Flow Capacitor

  • Kelsey B. Hatzella,
  • Majid Beidaghia,
  • Jonathan W. Camposa,
  • Christopher R. Dennisona, b,
  • Emin C. Kumburb,
  • Yury Gogotsia, 1, Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
  • a A. J. Drexel Nanotechnology Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
  • b Electrochemical Energy Systems Laboratory, Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA

Fig. 2. SEM image of activated carbon beads. (a) As-received beads with pristine surface, (b) Carbon beads from slurry after being cycled 1000 times in 2 M KOH and 0.139 M PPD. Insets show magnified images of the bead surfaces.The electrochemical flow capacitor (EFC) is a new technology for grid energy storage that is based on the fundamental principles of supercapacitors. The EFC benefits from the advantages of both supercapacitors and flow batteries in that it is capable of rapid charging/discharging, has a long cycle lifetime, and enables energy storage and power to be decoupled and optimized for the desired application.

The unique aspect of the EFC is that it utilizes a flowable carbon-electrolyte suspension (slurry) for capacitive energy storage. Similar to traditional supercapacitor electrodes, this aqueous slurry is limited in terms of energy density, when compared to batteries. To address this limitation, in this study a pseudocapacitive additive has been explored to increase capacitance. Fig. 3. Standard two-proton/two-electron oxidation and reduction reaction of p-phenylenediamine to p-phenylenediimine. (dark grey, dark blue and white correspond to carbon, nitrogen and hydrogen atoms).

Fig. 4. Capacitance as a function of changing concentrations of p-phenylenediamine and sweep rates ranging from 2 mV s−1 to 100 mV s−1.A carbon-electrolyte slurry prepared with p-phenylenediamine (PPD), a redox mediator, shows an increased capacitance on the order of 86% when compared with KOH electrolytes, and a 130% increase when compared to previously reported neutral electrolyte based slurries. The redox-mediated slurry also appears to benefit from a decrease in ohmic resistance with increasing concentrations of PPD, most likely a result of an increase in the ionic diffusion coefficient. Among the tested slurries, a concentration of 0.139 M of PPD in 2 M KOH electrolyte yields the largest capacitance and rate handling performance in both cyclic voltammetry and galvanostatic cycling experiments.

The improved performance is attributed to the addition of quick faradaic reactions at the electrolyte-electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation reaction during cycling.

Source: www.sciencedirect.com

Related Items: Carbon Materials as a Flowable Electrode in Electrochemical Flow Capacitors

 

News from MRC.ORG.UA

Scalable Production System for the Promising, 2D Nanomaterials MXenes

altFor one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties

 
CANBIOSE project participant from MRC completed secondment visit to partner organization Vilnius University, Lithuania, on February-March 2020 due to CANBIOSE project

altCANBIOSE project participant from MRC performed secondment visit to project partner organization Vilnius University, Lithuania, on February 24 - March 14 2020.

 
H2020 MSCA RISE SALSETH project participant from MRC V. Balitskiy started secondment at University of Novi Sad, Serbia

altSALSETH project participant from MRC Vitalii Balitskiy was hosted by partners from University of Novi Sad (UNS), Serbia, during his secondment visit according to the project plan.

 
SALSETH Project Kick-off meeting was held in University of Novi Sad, Serbia, on february 28, 2020

altResearch team from Materials Research Centre (MRC), Kyiv, Ukraine, was represented by Vitalii Balitskiy, who made a presentation to project partners about the MRC company, its capabilities, current research projects and main activities.

 
The science of the future and the use of intelligent nanomaterials in advanced technologies. Lecture by Professor Yury Gogotsi for students, schoolchildren of Junior Academy of Sciences of Ukraine in Igor Sikorsky Kyiv Polytechnic Institute,Feb 24, 2020

alt

The science of the future and the use of smart nanomaterials in new technologies. Lecture by Professor Yury Gogotsi for students, and schoolchildren of the Junior Academy of Sciences of Ukraine in Sikorsky Kyiv Polytechnic Institute, February 27, 2020

 
Horizon 2020 NANO2DAY project participant A.Stepura from Polymer Institute of Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Center (MRC), Kiev, Ukraine, on December 2019-February 2020

pisas--secondment-to-mrc-jan-2020_13.jpg - 86.27 KbAnastasiia Stepura from Polymer Institute Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Centre  on December 2019- February 2020 during her secondment performing research works due to H2020 NANO2DAY project.

 
H2020 NANO2DAY project participants from MRC Veronika Zahorodna and Oleksiy Gogotsi visited partner organization Polymer Instityte SAS, Bratislava, Slovakia on January 2020

altResearchers from the Materials Research Center (MRC), Kiev, Ukraine,  Oleksiy Gogotsi and Veronika Zahorodna visited Horizon 2020 NANO2DAY project partner organization Polymer Institute of Slovak Academy of Science, Bratislava, Slovakia on January 2020. In cooperation with PISAS colleagues they were working on MXene doped polymer nanocomposites.

 
H2020 NANO2DAY project participant from MRC Ivan Hryshko was visiting project partner organization University of Latvia, Riga, on November-December 2019

altResearch engineer from MRC Ivan Hryshko is being visiting the University of Latvia, where he held a seminar on MXenes

 
Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 12/11-11/12/2019, Lisboan, Portugal

altMRC Director O. Gogotsi and EsR Veronika Zahorodna in a secondment to LNEC, Lisboan, Portugal participated in a work meeting discussing project results and performing engineering research works due to H2020 MSCA RISE project No 690968 NANOGUARD2AR.

 
Horizon 2020 CANBIOSE project participants from Materials Research Center (MRC), Kiev, Ukraine visited partner organization Adam Mickiewicz University in Poznań, Poland, on October 27-November 27, 2019

altIn cooperation with AMU colleagues they were working on nanomaterials testing and characterization.

 
MXENE AT THE FRONTIER OF THE 2D MATERIALS WORLD BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019, October 15–17, 2019, Favorite Parkhotel, Mainz, Germany

altThe symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Zozulia Iuliia and Vitalii Balitskiy visited the partner organization Kaunas University of Technology, Kaunas, Lithuania on August 2019 - October 2019

altIn cooperation with KTU colleagues they were working on engineering simulations of mechanical  properties of nanomaterials and nanocomposites.

 
NANO2DAY project participants visited the BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019 on MXenes, October 15–17, 2019, Mainz, Germany

altNANO2DAY project participants visited the BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019 on MXenes.  The symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.

 
Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 14/09-13/10/2019, Lisboan, Portugal

alt Secondment visit of project participants from Materials Research Centre (MRC, Kyiv, Ukraine) Oleksiy Gogotsi and Veronika Zahorodna to National Laboratory of Civil Engineering (LNEC, Lisboan, Portugal) was performed under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR: NANOMATERIALS-BASED INNOVATIVE ENGINEERING SOLUTION TO ENSURE SUSTAINABLE SAFEGUARD TO INDOOR AIR, on 14/09-13/10/2019, Lisboan, Portugal.

 
CanBioSe project meeting and workshop at International Conference on Nanomaterials for biosensors and biomedical applications, Jurmala, Latvia

altMRC representatives, Oleksiy Gogotsi and Veronika Zahorodna attended CanBioSe project meeting held during International Conference on Nanomaterials for biosensors and biomedical applications, Jurmala, Latvia, on July 2019.