A High Performance Pseudocapacitive Suspension Electrode for the Electrochemical Flow Capacitor

Fig. 1. (a) Operational schematic of the electrochemical flow capacitor. Uncharged slurry flows through polarized plates and charged. At the pore level, electrode neutrality is maintained at the interface between the electrolyte and active material. This slurry is then pumped into external reservoirs for storage. The process is reversed during discharge. (b) Schematic of a carbon|electrolyte interface between charged spherical particles and (c) SEM image of carbon beads.

Publication on the electrochemical flow capacitor (EFC) by nanomaterials group of DNI, Drexel University, USA. EFC is a new technology for grid energy storage that is based on the fundamental principles of supercapacitors.

Fig. 1. (a) Operational schematic of the electrochemical flow capacitor. Uncharged slurry flows through polarized plates and charged. At the pore level, electrode neutrality is maintained at the interface between the electrolyte and active material. This slurry is then pumped into external reservoirs for storage. The process is reversed during discharge. (b) Schematic of a carbon|electrolyte interface between charged spherical particles and (c) SEM image of carbon beads.

Rus На русском Eng In English

Electrochimica Acta,Volume 111, 30 November 2013, Pages 888–897

A High Performance Pseudocapacitive Suspension Electrode for the Electrochemical Flow Capacitor

  • Kelsey B. Hatzella,
  • Majid Beidaghia,
  • Jonathan W. Camposa,
  • Christopher R. Dennisona, b,
  • Emin C. Kumburb,
  • Yury Gogotsia, 1, Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
  • a A. J. Drexel Nanotechnology Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
  • b Electrochemical Energy Systems Laboratory, Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA

Fig. 2. SEM image of activated carbon beads. (a) As-received beads with pristine surface, (b) Carbon beads from slurry after being cycled 1000 times in 2 M KOH and 0.139 M PPD. Insets show magnified images of the bead surfaces.The electrochemical flow capacitor (EFC) is a new technology for grid energy storage that is based on the fundamental principles of supercapacitors. The EFC benefits from the advantages of both supercapacitors and flow batteries in that it is capable of rapid charging/discharging, has a long cycle lifetime, and enables energy storage and power to be decoupled and optimized for the desired application.

The unique aspect of the EFC is that it utilizes a flowable carbon-electrolyte suspension (slurry) for capacitive energy storage. Similar to traditional supercapacitor electrodes, this aqueous slurry is limited in terms of energy density, when compared to batteries. To address this limitation, in this study a pseudocapacitive additive has been explored to increase capacitance. Fig. 3. Standard two-proton/two-electron oxidation and reduction reaction of p-phenylenediamine to p-phenylenediimine. (dark grey, dark blue and white correspond to carbon, nitrogen and hydrogen atoms).

Fig. 4. Capacitance as a function of changing concentrations of p-phenylenediamine and sweep rates ranging from 2 mV s−1 to 100 mV s−1.A carbon-electrolyte slurry prepared with p-phenylenediamine (PPD), a redox mediator, shows an increased capacitance on the order of 86% when compared with KOH electrolytes, and a 130% increase when compared to previously reported neutral electrolyte based slurries. The redox-mediated slurry also appears to benefit from a decrease in ohmic resistance with increasing concentrations of PPD, most likely a result of an increase in the ionic diffusion coefficient. Among the tested slurries, a concentration of 0.139 M of PPD in 2 M KOH electrolyte yields the largest capacitance and rate handling performance in both cyclic voltammetry and galvanostatic cycling experiments.

The improved performance is attributed to the addition of quick faradaic reactions at the electrolyte-electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation reaction during cycling.

Source: www.sciencedirect.com

Related Items: Carbon Materials as a Flowable Electrode in Electrochemical Flow Capacitors

 

News from MRC.ORG.UA

Our new collaborative research paper with Drexel team on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene

porous MAX phase technologyIn this study, we have optimized the synthesis of MAX phases for MXene manufacturing. The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive raw materials.

 
Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 
Read recently published paper about our collaborative work: MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

MXene Functionalized Kevlar Yarn via Automated,Continuous Dip CoatingThe rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed. 

 
MX-MAP project secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to University of Padova, Italy, October 2023

altMX-MAP project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed split secondment visit to project partner organization University of Padova (Italy). MX-MAP project works on development of the key strategies for MXene medical applications. 

 
CanbioSe Project Meeting and Project Workshop, September 26-27, 2023, Montpellier, France

altCanbioSe Project Meeting and Project Workshop was held  at European Institute of Membranes (IEM), University of Montpellier, France on September 26-27, 2023. The workshop was focused on the theme of "Commercializing Biosensors, Intellectual Property, and Knowledge Transfer from Academia to Industry.

 
IEEE NAP 2023: 2023 IEEE 13th International Conference “Nanomaterials: Applications & Properties” Sep 10, 2023 - Sep 15, 2023, Bratislava, Slovakia

altDr. Oleksiy Gogotsi and Veronika Zahorodna visited IEEE NAP 2023 conference held in Bratislava on September 10-15, 2023. The prime focus of the IEEE NAP-2023 was on nanoscale materials with emphasis on interdisciplinary research exploring and exploiting their unique physical and chemical proprieties for practical applications.

 
Visit to CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA)

altDirector of MRC and Carbon-Ukraine Dr. Oleksiy Gogotsi visited CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA). He meet with Dr. Pierluigi Bilotto, Dr. Chriatian Pichler and their colleagues, discussing novel materials and r&d activities for new technologies.

 
MX-MAP Session at YUCOMAT Conference 2023 "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

altMX-MAP Session was held during the YUCOMAT Conference 2023 titled: "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

 
THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023, HERCEG NOVI, MONTENEGRO, September 04-08, 2023

altThe conference was organised by the Materials Research Society of Sebia and supported by MRS-Singapore with the participation of a pleiad of distinguished scientists.

 
CANBIOSE secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to European Institute of Membranes in Montpellier, France

altCANBIOSE project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed secondment visit to project partner organization European Institute of Membranes in Montpellier (France) on August -September 2023.

 
MRC researchers visited Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to CANBIOSE project, April-May 2023

altMRC researchers Dr. Oleksiy Gogotsi and Veronika Zahorodna were visiting Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to close collaboration with AMU team led by Dr. Igor Iatsunskiy. 

 
Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.