Rus На русском
Eng In English

11 – 15 August, Cancún, Mexico

These annual international meetings provide an interactive forum to discuss the advances in synthesis, characterization, properties, processing, applications, basic research trends, corrosion prevention, and more, all related to the area of materials science and engineering.

The efforts of several societies, colleagues, sponsors and exhibitors offer an exciting multidisciplinary stage to learn first-hand about new directions in materials research and technology, as well as a valuable opportunity to share and exchange ideas with some of the foremost experts in the field.

Cancun, MexicoSYMPOSIA

1. Nanoscience and Nanotechnology
1A. Theoretical Aspects of Metal Clusters and Nanoalloys 
1B. Nanostructured Carbon Materials-Fundamentals to Applications 
1C. Emergent Properties of Polar Interfaces and Nanostructures 
1D. Nanotechnology Enhanced Coatings 
1E. Nanostructured Materials and Nanotechnology
2. Biomaterials
2A. Biomaterials for medical applications
2B. Bioinspired Hybrid Materials Synthesis
2C. Biominerals: From Biological Mechanism to Applications
3. Materials for Energy
3A. Photovoltaics, Solar Energy Materials and Technologies
3B. Renewable Energy and Sustainable Development
3C. Advanced Materials and Technologies for Energy Storage Devices
4. Fundamental Materials Science
4A. Advanced Structural Materials
4B. Concrete and Durability of Concrete Structures
4C. Functional Solid State Materials: Synthesis, Characterization, Theory, and Structure-Property Relationships
4D. New Trends in polymer chemistry and characterization
4E. Advances in Computational Materials Science
4F. Advances in Thin Film Processing
5. Materials Characterization
5A. Electron Microscopy of Materials 
5B. Advancing Materials Characterization with Neutrons
5C. Structural and Chemical Characterization of Metals Alloys and Compounds
6. Materials for Environmental Applications
6A. Catalysis - Solids, Molecules, Nanoparticles and Interfaces
6B. NACE: Corrosion and Metallurgy 
6C. Materials for Environmental Remediation and Sensing
7. Magnetic and Electronic Materials
7A. Magnetic shape memory alloys: from fundamentals to applications
7B. Current Trends in Magnetic Refrigeration
7C. Magneto-Optical Materials for nonreciprocal photonics, Imaging and Spatial Light Modulators
7D. Advances In Functional Semiconducting Materials
7E. Low-Dimensional Semiconductor Structures
8. General
8A. Cultural Heritage and Archaeological Issues in Materials Science (CHARIMSc) 
8B. Strategies for Academy-Industry Relationship
1. Polarity compensation mechanisms in oxide surfaces, interfaces thin films and nano-objects
2. Electron Microscopy for Materials: from the Basics to Atomic Resolution
3. Catalytic Properties using First Principles Methods 
4. I+D Privado - Pública ¿colaboración imposible o colaboración imprescindible?
5. Lecture Course Of Growth, Technology And Physics Of Semiconductor Nanowires 
6. Technological Innovation & Entrepreneurship
7. Ninguno

SYMPOSIA 1. Nanoscience and Nanotechnology
1B. Nanostructured Carbon Materials-Fundamentals to Applications

The expression "carbon age" has been coined to express the rapid development of new carbon nanomaterials whose unique electronic, optical, mechanical and thermal properties derive from carbon’s different allotropes: diamond, fullerenes, nanotubes, graphene and graphene oxides. This symposium will review recent progress in carbon-based material growth mechanisms, functionalization, and structural control of various nanostructures enroute to 3D architectures and their applications.

The significance of these nanocarbon bulk materials comes from their hierarchical 3D architectures and high-mass specific-surface area. The challenge and opportunity is to design nanostructured bulk materials with controlled architectures at the atomic and nanometer scales and surface functionalization that span multiple length scales to the macro size. Future progress will thus depend on improvements in growth techniques, structural control, surface functionalization, and large-scale synthesis and characterization, as well as advancing in the theoretical understanding and control of interfacial phenomena. Special focus will be given to structure vs property correlations, interfacial phenomena and novel applications. The symposium will bring together scientists from often-separated fields, therefore providing a platform to identify new opportunities in science and applications.

Symposium topics to be addressed include:

  • Novel growth techniques of CNTs, graphene, nanocrystalline diamond, graphene oxides, buckyballs and other carbon-related nanostructures
  • Atomic-scale nucleation and graphitization in metal and nonmetal catalytic growth processes
  • Synthesis and characterization of graphitic nanocarbon bulk materials with 3D architectures
  • Doping, surface chemistry and functionalization of graphitic carbon nanomaterials
  • Interfacial properties–from fundamentals to applications
  • Thermal and mechanical properties of carbon nanostructures
  • Catalytic properties of graphene oxides, graphene edges and nanodiamond structures
  • Novel phenomena of layer-, edge- and size-controlled graphene and atomic-structure-controlled CNTs
  • In-situ monitoring of growth processes and ex-situ characterization of atomic structures
  • Applications in energy conversion and storage, electronics, optics, optoelectronics, photonics, catalysis, purification, sensorics and actuation, as well as bioinspired applications
  • Modeling and theoretical predictions for novel properties

Invited speaker Dr. Yury Gogotsi, Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute Drexel UniversityDr.Yury Gogotsi "MXenes: TWO-DIMENSIONAL EARLY TRANSITION METAL CARBIDES AND CARBONITRIDES"


Two-dimensional (2D) materials are attracting much attention due to their unique properties. The most famous example is graphene, which is an atomically thin layer of carbon atoms bonded together in-plane with sp2 bonds. Recently, we discovered an entirely new family of 2D materials - early transition metal carbides and carbonitrides [1,2].

Selective etching of the A-group element from a MAX phase results in formation of 2D Mn+1Xn layers, labeled “MXene”. Eight different carbides and carbonitrides have been produced to date [2]; the properties of a larger number of 2D compounds have been predicted by DFT. Not only are individual layers formed after exfoliation, but also multi-layer particles and conical scrolls with radii < 20 nm. DFT simulations showed that the band gap of MXenes can be tuned from metallic to semiconductor by changing their surface termination, and their elastic constants along the basal plane are higher than that of the binary carbides. Recently, we reported on the intercalation of Ti3C2, Ti3CN and TiNbC [3].

Intercalation of hydrazine, and its co-intercalation with DMF, resulted in an increase of the c lattice parameter of MXenes. Urea also intercalated Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between the Ti3C2 layers. Hydrazine also intercalated Ti3CN and TiNbC. When dimethyl sulfoxide was intercalated into Ti3C2, followed by sonication in water, it delaminated forming a stable colloidal solution that was in turn filtered to produce MXene “paper”. One of the many potential applications for 2-D Ti3C2 is in electrical energy storage systems, such as lithium ion batteries and electrochemical capacitors. Additive-free Ti3C2 anodes, produced by filtering an aqueous dispersion of delaminated Ti3C2, showed a higher capacity than graphite anodes and also could be charged/discharged at significantly higher rates.

Source: www.mrs-mexico.org.mx



News from MRC.ORG.UA

Nano Iguana became a 1st place winner at 2017 MRS Science as Art Competition

Entry Nano Iguana became a 1st place winner at Science as Art Competition 2017: Nano-anatase (TiO2) crystals decorating graphene-like carbon, fabricated by oxidizing 2d Ti3C2 MXene powder, presented by A. J. Drexel Nanotechnology Institute and Department of Materials Science  and Engineering, Drexel University, USAResearch team from Drexel University lead by professor Yury Gogotsi produced an award-wining entry and became the 1st place winner in Science as Art competition at 2017 MRS Spring meeting in Phoenix.

1st Africa Energy Materials conference, 28 – 31 March 2017, Pretoria, South Africa

1st Africa Energy Materials conference On the first day of the conference, on March 28, the conference participants had an opportunity to attend a plenary lecture "Two-Dimensional Materials for High Rate and High-energy Density Storage" by invited plenary speaker professor Yury Gogotsi, Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University, and Director of the A.J. Drexel Nanomaterials Institute 

Workshop “Nanomaterials – based innovative engineering solution to ensure sustainable safeguard to indoor air “ NANOGUARD2AR 27-28 February, Lisbon, Portugal

altThe goal of the workshop is to attract the most recognized academic experts in the field of Innovative Nanomaterials for Environmental Application to share their knowledge and expertise on nanomaterials, nanoengineering and green building concepts.


Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds

Appointment ceremony of Honorary professorship for prof. Yury Gogotsi, Jilin University, Changchun, China on October 20, 2016

Honorary professor of Jilin University Yury Gogotsi  and Li Yuanyuan, President of Jilin University, academician of the Chinese Academy of Engineering

The official appointment ceremony of Honorary professorship for Dr. Yury Gogotsi took place in a ceremonial atmosphere at Jilin University, Changchun, Jilin Province, China on October 20, 2016.

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII), is held during 14-19 October, 2016 at Hunan Agriculture University together with Nanjing Tech University, Fudan University and University of Technology, Sydney.

Cleaning up electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene

MXene is a nanomaterial that is both thin and light, but also has the unique ability to block and absorb electromagnetic radiation, which makes it the perfect for use as shielding in electronics devices.

 According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material’s atomically thin layers.

Beijing University of Chemical Technology awarded prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor

Honorary Professor appointment ceremony at the Beijing University of Chemical TechnologyBeijing University of Chemical Technology have decided to award prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor based on his distinguished academic accomplishments. 

Prof. Yury Gogotsi became the winner of 2016 Nano Energy Award!

prof. Yury Gogotsi, Drexel UniversityNano Energy Award was presented to prof. Yury Gogotsi at 2016 Nanoenergy and Nanosystems Conference, which was held in Beijing on 13-15 July 2016.

Professor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China

meeting at Jilin UniversityProfessor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China, to meet research partners and discuss work questions and joint cooperation.

Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage, Jilin University, China

Director of Materials Research Centre Oleksiy Gogotsi visited interesting seminar lecture of Prof. Yury Gogotsi on MXenes for the students of Jilin University.

June 16, 2016 prof. Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage for the sudents and researchers of Jilin University, Changchun, China.

Nature Conference on Materials for Energy 2016

altProf.Yury Gogotsi at the Nature Journals’ Materials for Energy conference gave a talk on Synthesis, Properties And Energy Storage Applications of Two-Dimensional Carbides (Mxenes) in Wuhan University of Technology Conference Centre, Wuhan, China

Congratulations to Prof. Gogotsi on winning the 2016 Nano Energy Award

prof. Yury Gogotsi, Drexel UniversityThe award will be presented to prof. Yury Gogotsi at the Nanoenergy and Nanosystems 2016 conference, which will be held in Beijing between 13-15 July 2016.

Congratulations to professor Yury Gogotsi for being named a Thomson Reuters 2015 Highly Cited Researcher!

altProfessor Yury Gogotsi have been listed in the 2015 World’s Most Influential Scientific Minds.