Scale-up of MXene Synthesis

Scale-up of MXene Synthesis

O. Gogtosi ab, V. Zahorodna ab, Serhienko A. a, I. Hrysko a, Y. Zozulya a, V. Balitskyi a, M. Seredych c, B. Anasori c, Y. Gogotsi c

a Materials Research Center, Kiev 03680, Ukraine

b National Metallurgical Academy of Ukraine, Dnipro 49600, Ukraine

c A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

Corresponding author: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Abstract

The family of two-dimensional (2D) transition metal carbides and nitrides, MXenes, has been expanding rapidly since the discovery of Ti3C2 MXene in 2011 [1]. More than 20 different MXenes have been synthesized, and the structure and properties of numerous other MXenes have been predicted using density functional theory calculations [2].

Two-dimensional (2D) materials with a thickness of a few nanometers or less can be used as single sheets due to their unique properties or as building blocks, to assemble a variety of structures. MXenes properties can be tunable for a large variety of applications [3]that directly lead to their use for electromagnetic shielding [4], transparent conductors, light-to-heat energy conversion, new advanced lasers and photothermal therapy.

Synthesis of MXene typically begins with etching the A-element atomic layers (for example, aluminum) in a MAX phase (for example, Ti3AlC2) with HF solution and/or a mixture of fluoride salts and acids at room temperature or slightly higher temperature. After the etching is finished (complete removal of the A-element layers), washing must be applied to remove residual acid and reaction products (salts) and achieve a safe pH (6). After the pH is increased to 6, and eventual intercalation of large organic molecules and subsequent delamination completed, the multilayered MXene flakes or single nanosheets can be collected via vacuum-assisted filtration and then dried in vacuum [5].

MXenes can be deposited form solution by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Synthesis conditions used to produce MXenes influence the resulting properties and thus are directly related to the performance of MXenes in their applications [5]. In the laboratory, researchers synthesize MXene in gram quantities, and it is very difficult to repeat the synthesis conditions in order to obtain a material with the same repeatable properties.

For scaling up the laboratory process and to obtain material in larger quantities (up to 200 g per batch) of good quality with repeatable properties, a pilot laboratory line was developed [5]), which allows us to control the etching process and adjust its basic parameters - temperature, mixing speed, recording and storing all necessary data for analysis or to repeat the conditions during subsequent syntheses to obtain a MXene with repeatable properties. In addition, since the acidic etching process is accompanied by the release of heat, a specially developed sealed reactor allows safe and reliable synthesis. The computer control system provides the desired precursor feed rate and the optimal synthesis temperature profile [6].

References

[1] Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. M. Naguib, et al., Advanced Materials, 23, 4248 (2011)

[2] Synthesis and Biomedical Applications of 2D Carbides (MXenes). Gogotsi, O. G., Zahorodna, V. V., Balitskiy, V. Y., Zozulya, Y. I., Gogotsi, H. G., Brodnikovskiy, M. P., Gubynskyi, M. V., Fedorov, S. S., Alhabeb, M., Meng, F., Anasori B., Gogotsi, Y. Abstracts Book of 5th International Conference, Nanobiophysics: Fundamental and Applied Aspects, October 2-5, 2017, Kharkiv, Ukraine

[3] Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. J. Xuan, et al., Angew. Chem. Int. Ed. 55, 1 – 7 (2016)

[4] F. Shahzad, M. Alhabeb, C.B. Hatter, B, Anasori, S.M. Hong, C. M. Koo, Y. Gogotsi, Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes), Science, 353 (6304) 1137-1140 (2016)

[5] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene), Chemistry of Materials, 29 (18) 7633-7644 (2017)

[6] O.O. Honcharuk, V.Y. Balitskiy, R.V. Voron, M.P.Brodnikovskiy, O.G. Gogotsi, V.V. Zahorodna, Y.I. Zozulya, M. Alhabeeb, B. Anasori, K. Malesky, Y. Gogotsi. Synthesis and Optical Properties of 2D Carbide MXenes, Book of Abstracts for 11th International Scientific-Technical Conference "Composite Materials", National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", April 2018, рр.118-120. UDC 542;546;62.

 Acknowledgement. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777810.

alt

O. Gogtosi, V. Zahorodna, I. Hrysko, A. Serhienko, Y. Zozulya, V. Balitskiy, M. Seredych, B. Anasori, Y. Gogotsi. Scale-up of MXene Synthesis, 2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, Zatoka, September 9-14, 2018

 2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties

 

2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, September 09-14, 2018

2018 IEEE International Conference on “Nanomaterials Applications & Properties”At the poster session of the conference Oleksiy Gogotsi presented two poster presentations on advanced nanomaterials for different applications, prepared with colleagues from Drexel University, USA, and Jilin University, China

 

News from MRC.ORG.UA

CANBIOSE project participant from MRC completed secondment visit to partner organization Vilnius University, Lithuania, on February-March 2020 due to CANBIOSE project

altCANBIOSE project participant from MRC performed secondment visit to project partner organization Vilnius University, Lithuania, on February 24 - March 14 2020.

 
Scalable Production System for the Promising, 2D Nanomaterials MXenes

altFor one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties

 
The science of the future and the use of intelligent nanomaterials in advanced technologies. Lecture by Professor Yury Gogotsi for students, schoolchildren of Junior Academy of Sciences of Ukraine in Igor Sikorsky Kyiv Polytechnic Institute,Feb 24, 2020

alt

The science of the future and the use of smart nanomaterials in new technologies. Lecture by Professor Yury Gogotsi for students, and schoolchildren of the Junior Academy of Sciences of Ukraine in Sikorsky Kyiv Polytechnic Institute, February 27, 2020

 
Horizon 2020 NANO2DAY project participant A.Stepura from Polymer Institute of Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Center (MRC), Kiev, Ukraine, on December 2019-February 2020

pisas--secondment-to-mrc-jan-2020_13.jpg - 86.27 KbAnastasiia Stepura from Polymer Institute Slovak Academy of Science (Bratislava, Slovakia) was hosted by Materials Research Centre  on December 2019- February 2020 during her secondment performing research works due to H2020 NANO2DAY project.

 
H2020 NANO2DAY project participants from MRC Veronika Zahorodna and Oleksiy Gogotsi visited partner organization Polymer Instityte SAS, Bratislava, Slovakia on January 2020

altResearchers from the Materials Research Center (MRC), Kiev, Ukraine,  Oleksiy Gogotsi and Veronika Zahorodna visited Horizon 2020 NANO2DAY project partner organization Polymer Institute of Slovak Academy of Science, Bratislava, Slovakia on January 2020. In cooperation with PISAS colleagues they were working on MXene doped polymer nanocomposites.

 
H2020 NANO2DAY project participant from MRC Ivan Hryshko is visiting project partner organization University of Latvia, Riga, on November-December 2019

altResearch engineer from MRC Ivan Hryshko is being visiting the University of Latvia, where he held a seminar on MXenes

 
Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 12/11-11/12/2019, Lisboan, Portugal

altMRC Director O. Gogotsi and EsR Veronika Zahorodna in a secondment to LNEC, Lisboan, Portugal participated in a work meeting discussing project results and performing engineering research works due to H2020 MSCA RISE project No 690968 NANOGUARD2AR.

 
MXENE AT THE FRONTIER OF THE 2D MATERIALS WORLD BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019, October 15–17, 2019, Favorite Parkhotel, Mainz, Germany

altThe symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Zozulia Iuliia and Vitalii Balitskiy visited the partner organization Kaunas University of Technology, Kaunas, Lithuania on August 2019 - October 2019

altIn cooperation with KTU colleagues they were working on engineering simulations of mechanical  properties of nanomaterials and nanocomposites.

 
NANO2DAY project participants visited the BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019 on MXenes, October 15–17, 2019, Mainz, Germany

altNANO2DAY project participants visited the BEILSTEIN NANOTECHNOLOGY SYMPOSIUM 2019 on MXenes.  The symposium brought together leading international experts and those researchers who are just entering the exciting world of 2D carbides and nitrides to explore new synthesis methods, better understand properties and find new applications of MXenes.

 
Secondment of project participants from MRC O. Gogotsi and V. Zahorodna to project partners from LNEC under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR, 14/09-13/10/2019, Lisboan, Portugal

alt Secondment visit of project participants from Materials Research Centre (MRC, Kyiv, Ukraine) Oleksiy Gogotsi and Veronika Zahorodna to National Laboratory of Civil Engineering (LNEC, Lisboan, Portugal) was performed under Horizon 2020 MSCA RISE Project №690968 NANOGUARD2AR: NANOMATERIALS-BASED INNOVATIVE ENGINEERING SOLUTION TO ENSURE SUSTAINABLE SAFEGUARD TO INDOOR AIR, on 14/09-13/10/2019, Lisboan, Portugal.

 
CanBioSe project meeting and workshop at International Conference on Nanomaterials for biosensors and biomedical applications, Jurmala, Latvia

altMRC representatives, Oleksiy Gogotsi and Veronika Zahorodna attended CanBioSe project meeting held during International Conference on Nanomaterials for biosensors and biomedical applications, Jurmala, Latvia, on July 2019.

 
Professor Yury Gogotsi, Drexel University, gave a lecture on MXenes at the Slovak Academy of Sciences in Bratislava, May 29, 2019

altProfessor Yury Gogotsi, a leading world scientist, gave a lecture in Bratislava on new types of 2D materials at the  auditorium of the Slovak Academy of Sciences (SAS) in Bratislava, May 29 2019.

 
Nano2Day MID-TERM CONTRACTUAL MEETING and Workshops, May 28-31, 2019

altSeconded persons presented their contribution to the WPs including scientific background (education/experience and home institution) and secondment details (period, tasks, impact both on the overall project and on his/her own career).

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, visited the partner organization Belarusian State University, Minsk, Belarus on May 2019

altMRC visited the partner organization Belarusian State University.Together with our partners from BSU, experience in the field of dispersion of CNT and graphene in polymers was discussed and studied сomparison of different resins and  hardener  for the fabrication of the polymer matrix.