Nanostructured tunable mesoporous carbon for energy and biomedical applications

E-mail Печать PDF

 4th International Conference Nanobiophysics: Fundamental and Applied Aspects, 1-4 October 2015, Kyiv, Ukraine

Nanostructured tunable mesoporous carbon for energy and biomedical applications

O. Gogotsi1, B. Dyatkin2, Y. Gogotsi2, P. Simon³, Y. Zozulya1, B. Malinovskiy1, V. Zahorodna1

1 Materials Research Centre, 3, Akademika Krzhyzhanovskoho St, Kyiv 03680, Ukraine, E-mail: E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

2A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA, E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

³ Université Paul Sabatier-Toulouse III, CIRIMAT UMR-CNRS 5085, and RS2E, FR CNRS 3459, 118 Route de Narbonne, 31062 Toulouse, France. E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Abstract

              Nanostructured tunable mesoporous carbon for energy and biomedical applicationsWe will discuss synthesis of carbide-derived carbon (CDC), which is a nanoporous carbon formed by selectively etching metal atoms from metal carbides [1]. CDCs are generally produced by chlorination of carbides in the 200–1200°C temperature range. Metals and metalloids are removed as chlorides, leaving behind a noncrystalline carbon with up to 80% open pore volume. A wide range of carbide precursors (TiC, SiC, B4C, VC, Mo2C, NbC as well as ternary carbides – Ti3AlC2, Ti2AlC, also known as MAX-phases) leads to a wide range of carbons with tailored porosity. The total volume and characteristic dimensions of meso- and nanopores can be predicted and achieved by selection of a binary or ternary carbide and variation of the chlorination process parameters. Due to a wide range of pore sizes (0.3–30 nm) and specific surface areas (300–2300 m2/g) of CDCs, a great potential for applications requiring large volumes of either micropores (

The highly tunable porosity of CDC [1,2] has inspired fundamental studies of the effects of pore size, pore volume, and surface area on transport and adsorption of gases, ions and biomolecules. The unique properties of CDC allowed to use it in many demanding applications including H2 and methane storage, gas sorption, adsorbents, electrodes in batteries and supercapacitors [3], flow capacitors, molecular sieves, catalyst supports, water/air filters and medical devices, protein adsorption, tribology, extracorporeal devices for blood cleansing [4]. Such properties of CDC as good electrical conductivity combined with high surface area, large micropore volume, and pore size control allow its application as active material in electrodes for flow desalination [5], supercapacitors [6] as porous electrodes for capacitive deionization [7].

Chlorination of layered ternary MAX-phase carbides has made it possible to synthesize mesoporous carbons with large volumes of slit-shaped mesopores that can be used for purification of bio-fluids due to their excellent biocompatibility and ability to adsorb a range of inflammatory cytokines within the shortest time, which is crucial in sepsis treatment. The synthesized carbons, having tunable pore size with a large volume of slit-shaped mesopores, outperformed other materials in terms of efficiency of TNF-α removal. Cytokine removal from blood may help to bring under control the unregulated pro- and anti-inflammatory processes driving sepsis. Adsorption can remove toxins without introducing other substances into the blood. Therefore, hemoadsorption might have advantages over hemofiltration, having the same or better efficiency in the treatment of inflammatory diseases, being of lower cost and offering considerably better comfort for patients during and after the treatments [8].

Large mesopores in CDC from MAX phases are capable to accommodate most of the proteins due to their controlled porosity can be used for separation of different proteins molecules.

 References:

 [1] G. Yushin, Y. Gogotsi, A. Nikitin, Carbide Derived Carbon, in: Y.Gogotsi (Ed.), Nanomaterials Handbook, CRC Press, New York, 2006, pp. 237–280.

 [2] Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nature Materials 2 (2003) 591–594.

 [3]. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L.Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science 313 (2006) 1760–1763.

 [4]G. Yushin, E. Hoffman, M.W. Barsoum, Y. Gogotsi, C.A. Howell, S.R. Sandeman, G.J. Phillips, A.W. Lloyd, S.V Mikhalovsky,Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines, Biomaterials, 27 (2006) 5755–5762.

 [5] P. Simon, P.-L. Taberna, B. Daffos, E. Iwama, T. Tzedakis, Y. Gogotsi, K. Hatzell, O. Gogotsi, Method and device to remove ions form an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor. European Patent Application 13305761.2-1360, filed June 6, 2013

 [6]B. Dyatkin, O. Gogotsi, Y. Zozuly, B. Malinovskiy, P. Simon, Y. Gogotsi. High Capacitance of Coarse-Grained Carbide-Derived Carbon Particles. Abstract Book of the 4th International Symposium on Enhanced Electrochemical Capacitors, June 8-12 2015, Montpelier, France, p.143.

 [7] Hatzell, K. B., Iwama, E., Daffos, B., Taberna, P. L., Tzedakis, T., Gogotsi, A., Gogotsi, Y. High Electrosorption Capacity Electrodes for Capacitive Deionization, 224th ECS Meeting (October 27–November 1, 2013), Meeting Abstracts (No. 4, pp. 235-235).

 [8]. Mikhalovsky SV. Emerging technologies in extracorporeal treatment: Focus on adsorption. Perfusion-UK 2003;16(2):47–54.

Download PDF Version of Nanostructured tunable mesoporous carbon for energy and biomedical applications

Here you can find Book of Abstract of the Conference NBP 2015

 

News from MRC.ORG.UA

Our new collaborative research paper with Drexel team on Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene

porous MAX phase technologyIn this study, we have optimized the synthesis of MAX phases for MXene manufacturing. The main purpose of this study is to develop a porous Ti3AlC2MAX phase that can be easily ground into individual grains manually without time-consuming eliminating the need for drilling and intenseball-milling before MXene synthesis. Moreover, we also demonstrate the synthesis of highly porous Ti3AlC2 (about 70%) from an inexpensive raw materials.

 
Novel electrically conductive electrospun PCL‑MXene scaffolds for cardiac tissue regeneration

Scanning electron microscopy image of PCLMXene membranes crosssection (left side) with the representation of EDX line (dotted line) and example of cross-sectional EDX elements line scan (right side)Here we demonstrate a new developed method for depositing Ti3C2Tx MXenes onto hydrophobic electrospun PCL membranes using oxygen plasma treatment. These novel patches hold tremendous potential for providing mechanical support to damaged heart tissue and enabling electrical signal transmission,thereby mimicking the crucial electroconductivity required for normal cardiac function. After a detailed investigation of scaffold-to-cell interplay, including electrical stimulation, novel technology has the potential for clinical application not only for cardiac regeneration, but also as neural and muscular tissue substitutes.

 
Read recently published paper about our collaborative work: MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

MXene Functionalized Kevlar Yarn via Automated,Continuous Dip CoatingThe rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles. Here, a versatile automated yarn dip coater tailored for producing continuously high-quality MXene-coated yarns and conducted the most comprehensive MXene-yarn dip coating study to date is developed. 

 
MX-MAP project secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to University of Padova, Italy, October 2023

altMX-MAP project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed split secondment visit to project partner organization University of Padova (Italy). MX-MAP project works on development of the key strategies for MXene medical applications. 

 
CanbioSe Project Meeting and Project Workshop, September 26-27, 2023, Montpellier, France

altCanbioSe Project Meeting and Project Workshop was held  at European Institute of Membranes (IEM), University of Montpellier, France on September 26-27, 2023. The workshop was focused on the theme of "Commercializing Biosensors, Intellectual Property, and Knowledge Transfer from Academia to Industry.

 
IEEE NAP 2023: 2023 IEEE 13th International Conference “Nanomaterials: Applications & Properties” Sep 10, 2023 - Sep 15, 2023, Bratislava, Slovakia

altDr. Oleksiy Gogotsi and Veronika Zahorodna visited IEEE NAP 2023 conference held in Bratislava on September 10-15, 2023. The prime focus of the IEEE NAP-2023 was on nanoscale materials with emphasis on interdisciplinary research exploring and exploiting their unique physical and chemical proprieties for practical applications.

 
Visit to CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA)

altDirector of MRC and Carbon-Ukraine Dr. Oleksiy Gogotsi visited CEST labs in Wiener Neustadt (Low Energy Ion Scattering, Batteries development) and TU Vienna (ELSA, SFA). He meet with Dr. Pierluigi Bilotto, Dr. Chriatian Pichler and their colleagues, discussing novel materials and r&d activities for new technologies.

 
MX-MAP Session at YUCOMAT Conference 2023 "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

altMX-MAP Session was held during the YUCOMAT Conference 2023 titled: "Towards MXenes’ biomedical applications by high-dimensional immune MAPping", HORIZON-MSCA-2021-SE-01 project MX-MAP.

 
THE TWENTY-FOURTH ANNUAL CONFERENCE YUCOMAT 2023, HERCEG NOVI, MONTENEGRO, September 04-08, 2023

altThe conference was organised by the Materials Research Society of Sebia and supported by MRS-Singapore with the participation of a pleiad of distinguished scientists.

 
CANBIOSE secondment visit of Dr. Oleksiy Gogotsi and Veronika Zahorodna from MRC to European Institute of Membranes in Montpellier, France

altCANBIOSE project participants from MRC Dr. Oleksiy Gogotsi and Veronika Zahorodna performed secondment visit to project partner organization European Institute of Membranes in Montpellier (France) on August -September 2023.

 
MRC researchers visited Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to CANBIOSE project, April-May 2023

altMRC researchers Dr. Oleksiy Gogotsi and Veronika Zahorodna were visiting Nanobiomedical Centre, Adam Mickewicz University in Poznan, Poland due to close collaboration with AMU team led by Dr. Igor Iatsunskiy. 

 
Twenty Third Annual Conference - YUCOMAT 2022 Twelfth World Round Table Conference on Sintering - XII WRTCS 2022 Herceg Novi, August 29 – September 2, 2022

alt

Our collaborators and partners  presented our joint research at the Yucomat conference - at Symposium on Biomaterials and two collaborative posters at Conference Poster Session.

 
MRC team visited 2nd international MXene conference "MXenes: Addressing Global Challenges with Innovation"at Drexel University, USA on Aug. 1-3, 2022

second MXene COnference 2022, Drexel University, USA

MRC team members Dr. Oleksiy Gogotsi, Veronika Zahorodna, Dr. Iryna Roslyk visited MXene Confrence 2022.  This 2nd international MXene conference at Drexel University, August 1-3, 2022, put major MXene discoveries, including their record-breaking electrical conductivity, electromagnetic interference shielding capability, electrochemical capacitance, light-to-heat conversion, and other properties, into perspective.

 
Launching HORIZON-MSCA-2021-SE-01 MX-MAP Project: Towards MXenes biomedical applications by high-dimensional immune MAPping

MX-MAP project Meeting during the MXene international conference held in Drexel University on Aug. 3,  2022, and discussing the roadmap for launching MX-MAP research project on MXenes for medical applications.

 
H2020-MSCA-RISE NANO2DAY research project, last updates

alt

Researchers from University of Latvia and Materials Research Center, Ukraine are visiting Drexel University due to Horizon-2020-MSCA-RISE NANO2DAY research project.