Symposium on Two-dimensional Nanomaterials 2015, March 10-11, Melbourne, Australia

Symposium on Two-dimensional Nanomaterials 2015

10-11 March 2015, Melbourne, Australia

alt

Two-dimensional (2D) nanomaterials, are emerging new class of nanomaterials with many fascinating properties and applications. This two-day event provides an ideal networking opportunity for researchers to communicate on their latest research.

The areas of focus for this meeting will include (but are not limited to) both advances in fundamental physics, chemistry, materials science, biology and computer modelling of 2D materials, including graphene, BN, MoS2 and transition metal dichalcogenides (TMDs) nanosheets, but also their applications in functional materials. Applications in areas of energy, the environment, nanomedicine and sensing are welcomed.

Professor Yury Gogotsi, Drexel University (USA) will give a Keynote Lecture at the Symposium on Two-dimensional Nanomaterials in Melbourne - "Two-Dimensional Carbides and Nitrides (MXenes): Synthesis, Properties and Electrochemical Applications" on Tuesday, March 10, 2015. Also he will give an invited talk at a post-conference Workshop at the Institute for Frontier Materials, Deakin University, Geelong, on "Capacitive Energy Storage Systems Utilizing Carbon Nanomaterials”.

Two-Dimensional Carbides and Nitrides (MXenes): Synthesis, Properties and Electrochemical Applications

Yury Gogotsi*

Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute,
Drexel University,
Philadelphia, PA 19104, USA
Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Two-dimensional (2D) solids – the thinnest materials available to us – offer unique properties and a potential path to device miniaturization. The most famous example is graphene, which is an atomically thin layer of carbon atoms bonded together in-plane with sp2 bonds. Recently, an entirely new family of 2D solids – transition metal carbides (Ti2C, Ti3C2, Nb4C3, etc.) and carbonitrides – was discovered by Drexel University scientists.1,2 Selective etching of the A-group element from a MAX phase results in formation of 2D Mn+1Xn solids, labeled “MXene”. Eleven different carbides and carbonitrides have been reported to date.2-5 Structure and properties of numerous MXenes have been predicted by the density functional theory, showing that MXenes can be metallic or semiconducting (up to 2 eV band gap), depending on their surface termination. Their elastic constants along the basal plane are expected to be higher than that of the binary carbides. Oxygen or OH terminated MXenes, are hydrophilic, but electrically conductive. Hydrazine, urea and other polar organic molecules can intercalate MXenes leading to an increase of the c lattice parameter of MXenes.3 When dimethyl sulfoxide was intercalated into Ti3C2, followed by sonication in water, a stable colloidal solution of single- and few-layer flakes was produced. One of the many potential applications for 2D Ti3C2 is in electrical energy storage devices, such as batteries, Li-ion capacitors and supercapacitors.4,6 Cations ranging from Na+ to Mg2+ and Al3+ intercalate MXenes. Ti3C2 paper electrodes, produced by vacuum assisted filtration of an aqueous dispersion of delaminated Ti3C2, show a higher capacity than graphite anodes and also can be charged/discharged at significantly higher rates. They also demonstrate very high intercalation capacitance (up to 900 F/cm3) in aqueous electrolytes.

References
1 M. Naguib, et al, Advanced Materials, 23 (37), 4207-4331 (2011)
2 M. Naguib, et al, ACS Nano 6 (2), 1322–1331 (2012)
3 O. Mashtalir, et al, Nature Communication, 4, 1716 (2013)
4 M. R. Lukatskaya, et al, Science, 341, 1502-1505 (2103)
5 M. Naguib, et al, Advanced Materials, 26, 992-1005 (2014)
6 M. Ghidiu, et al, Nature, 516, 78–81 (2014)

 Professor Yury Gogotsi, Drexel University (USA) is giving a Lecture at the Symposium on Two-dimensional Nanomaterials in Melbourne, March, 2015

Prof. Yury Gogotsi is giving a lecture at Symposium on Two-dimensional Nanomaterials 2015, March, Melbourne, Australia

Symposium on Two-dimensional Nanomaterials 2015 10-11 March 2015, Melbourne, Australia

Source: www.deakin.edu.au

 

News from MRC.ORG.UA

Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes. 

 
Yury Gogotsi is the most influential scientist of modern Ukraine

altThe life of Yury Gogotsi is a constant back and forth between the top laboratories in the world, writing articles in the best scientific journals and research materials that can change the world around them.