Liquid Benzene Squeezed to Form Diamond Nanothreads

Rus На русском Eng In English

Liquid Benzene Squeezed to Form Diamond Nanothreads

 The classic Beatles song “Lucy in the Sky with Diamonds” may have a new meaning. Scientists announced they have likely discovered the strongest, stiffest diamond-based nanomaterial to date. Its properties suggest it could have important industrial applications, such as in transportation or aerospace manufacturing, and it might revive the idea of building elevators to space.
 
A team led by chemist John Badding of Pennsylvania State University took an approach reminiscent of the way Superman squeezed coal into diamond in comic books. The researchers found that isolated, liquid-state benzene molecules, which consist of rings of carbon atoms, assemble into surprisingly neat and orderly chains after enduring slow, alternating cycles of pressure. The resulting thread, merely three atoms across and thousands of times thinner than a strand of hair, appears to have a zigzagging arrangement of rings of carbon atoms in the shape of a triangular pyramid—a formation similar to diamond’s. Such a structure, which scientists didn’t know was possible until now, could be the strongest and most durable nanomaterial ever made.
 
Badding says that the team’s discovery was serendipitous: “Honestly, it was just an accident.” Thomas Fitzgibbons, a graduate student in Badding’s lab, wanted to study materials made by the organic chemical compound benzene. When isolated, benzene molecules can react in interesting ways to form unique structures. To study these structures using conventional techniques, however, Fitzgibbons needed large quantities of the product. He brought a sample of liquid benzene to a machine called a Paris-Edinburgh device at Oak Ridge National Laboratory in Tennessee and put the molecules into a high-pressure cell. In general, when a liquid is squeezed under intense pressure, it transforms into a solid. “It essentially freezes,” Badding says. Once frozen, benzene molecules align into predictable patterns of stacked columns.
 
What happened next is the unusual part. Scientists have generally believed that as compression continues, the benzene molecules eventually yield a sloppy, white powder. “People thought they’d react in a disorganized way and make a mess,” Badding says.
 
But instead of disarray, Fitzgibbons saw order. “That was a shock to us, to say the least,” Badding confesses. The researchers were so surprised, they deployed a battery of techniques to confirm the finding, including x-ray and neutron diffraction, transmission electron microscopy and vibrational spectroscopy. Their results were consistent: they saw order.
 
The reason for this unexpected alignment of benzene molecules may lie in the timing of the compression. Scientists generally create benzene materials in small amounts by quick cycles of pressure changes. To make more product, the compression cycles must be slower. “It seems we gave benzene molecules time to arrange into a pattern, particularly nanothreads,” Badding says. This slow compression was key to their discovery.
 
Yury Gogotsi, director of the A. J. Drexel Nanomaterials Institute at Drexel University, says that although the results are indeed exciting, he would like further confirmation and analysis of the material, for example using “much higher-resolution images, which can further shed light on the material’s structure,” Gogotsi says. “Assuming their interpretation is correct, which there’s good reason to believe, I think this discovery is significant.”

alt Before the nanothreads can be used commercially, Badding wants to determine their properties and behavior in different conditions and to understand exactly how the benzene molecules link up. The studies could take years, he says. Then engineers will need to figure out how best to mass-manufacture them and incorporate them into existing industrial infrastructure for various uses. For a start, these threads seem poised to replace carbon fiber, which is weaker and heavier, in commercial products such as bicycle frames, golf clubs and airplane bodies.
 
Even further in the future, the nanothreads could perhaps stretch into space to deliver supplies to the International Space Station or interact with orbiting satellites. Seriously. Futurists have long imagined that a cable anchored on Earth and attached to a satellite in orbit could be the basis for a space elevator, but making a cable long and strong enough to resist the high-altitude winds and to ferry loads safely has proved a challenge. Conventional steel cables would break under their own weight. Diamond nanothreads could in principle be both light enough and tough enough to do the job.
 
Even if this particular nanothread proves incapable of sending supplies or humans into orbit, its discovery could pave the way for better alternatives. This is not the first time scientists have spawned diamond structures by tricking rings of carbon into unique configurations. Diamond-like carbons, also called amorphous carbons, are typically applied as coatings to other materials, such as the protective layer on a stainless steel pan. Gogotsi says that although hitting upon a new structure is surprising and interesting, this research reminds chemists that the discovery of other similar structures is not far off. “This group has shown that it’s another member of the family of diamond structures, and I’m sure that it’s not the last,” Gogotsi says. If so, then someday a space elevator may exist, and there might really be diamonds in the sky.

Source: http://www.scientificamerican.com/article/liquid-benzene-squeezed-to-form-diamond-nanothreads/

 

News from MRC.ORG.UA

The 6th International Conference on Novel Functional Carbon Nanomaterials at the 8th Forum on New Materials (CIMTEC 2018) in Perugia, Italy, June 11-14

Фото Yury Gogotsi.The 6th International Conference “Novel Functional Carbon Nanomaterials”within the 8th Forum on New Materials at CIMTEC 2018 held in Perugia, Italy,  highlighted recent achievements and challenges in the synthesis, structural control and modeling at the meso- and nano-scales of the variety of low-dimensional carbon allotropes including nanodiamonds, diamond-like carbon, fullerenes, nanotubes, graphene and graphene-related structures, as well as high surface area carbon networks, which are promising for a range of emerging applications in energy conversion and storage, water purification, high-speed nanoelectronics, optoelectronics, photonics, quantum information processing, quantum computing, biosensing, drug delivery, medical imaging, thermal management, catalysis, lubrication, etc.

 
1st International Conference on MXenes at Jilin University, Changchun, China

MXene conference 2018The meeting is the first international conference focusing on MXene materals, which is to bring scientists in the two-dimensional materials or energy area to interact and discuss the advances and challenges in various fields.

 
Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
H2020-MSCA-RISE Nano2Day Kick-off project meeting, Academic Centre of University of Latvia, Riga, 10-11 May 2018

altH2020-MSCA-RISE project „Multifunctional polymer composites doped with novel 2D nanoparticles for advanced applications NANO2DAY” started on May 1, 2018. It is aimed to develop novel multifunctional composites with outstanding electronic and mechanical properties by incorporation of novel MXene nanosheets into polymer matrixes.

 
Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine" as part of the NAU Info Day

horizon2020 семінарOn February 14, 2018, Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine"  as part of the NAU Info Day.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
Director of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China

Visit to Jilin University, Changchun, ChinaDirector of Materials Research Centre Oleksiy Gogotsi visited Jiln University, Changchun, China. He had a work meeting with Yury Gogotsi, Distinguished University Professor and Trustee Chair in the Department of Materials Science and Engineering at Drexel University, USA, and Distinguished Foreign Professor at Jilin University and Professor Wei Han, Executive Deputy Director of International Collaborative Center of Talents, International Center of Future Science, and discussed ongoing joint works and research on materials for supercapacitors.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.