Liquid Benzene Squeezed to Form Diamond Nanothreads

Rus На русском Eng In English

Liquid Benzene Squeezed to Form Diamond Nanothreads

 The classic Beatles song “Lucy in the Sky with Diamonds” may have a new meaning. Scientists announced they have likely discovered the strongest, stiffest diamond-based nanomaterial to date. Its properties suggest it could have important industrial applications, such as in transportation or aerospace manufacturing, and it might revive the idea of building elevators to space.
A team led by chemist John Badding of Pennsylvania State University took an approach reminiscent of the way Superman squeezed coal into diamond in comic books. The researchers found that isolated, liquid-state benzene molecules, which consist of rings of carbon atoms, assemble into surprisingly neat and orderly chains after enduring slow, alternating cycles of pressure. The resulting thread, merely three atoms across and thousands of times thinner than a strand of hair, appears to have a zigzagging arrangement of rings of carbon atoms in the shape of a triangular pyramid—a formation similar to diamond’s. Such a structure, which scientists didn’t know was possible until now, could be the strongest and most durable nanomaterial ever made.
Badding says that the team’s discovery was serendipitous: “Honestly, it was just an accident.” Thomas Fitzgibbons, a graduate student in Badding’s lab, wanted to study materials made by the organic chemical compound benzene. When isolated, benzene molecules can react in interesting ways to form unique structures. To study these structures using conventional techniques, however, Fitzgibbons needed large quantities of the product. He brought a sample of liquid benzene to a machine called a Paris-Edinburgh device at Oak Ridge National Laboratory in Tennessee and put the molecules into a high-pressure cell. In general, when a liquid is squeezed under intense pressure, it transforms into a solid. “It essentially freezes,” Badding says. Once frozen, benzene molecules align into predictable patterns of stacked columns.
What happened next is the unusual part. Scientists have generally believed that as compression continues, the benzene molecules eventually yield a sloppy, white powder. “People thought they’d react in a disorganized way and make a mess,” Badding says.
But instead of disarray, Fitzgibbons saw order. “That was a shock to us, to say the least,” Badding confesses. The researchers were so surprised, they deployed a battery of techniques to confirm the finding, including x-ray and neutron diffraction, transmission electron microscopy and vibrational spectroscopy. Their results were consistent: they saw order.
The reason for this unexpected alignment of benzene molecules may lie in the timing of the compression. Scientists generally create benzene materials in small amounts by quick cycles of pressure changes. To make more product, the compression cycles must be slower. “It seems we gave benzene molecules time to arrange into a pattern, particularly nanothreads,” Badding says. This slow compression was key to their discovery.
Yury Gogotsi, director of the A. J. Drexel Nanomaterials Institute at Drexel University, says that although the results are indeed exciting, he would like further confirmation and analysis of the material, for example using “much higher-resolution images, which can further shed light on the material’s structure,” Gogotsi says. “Assuming their interpretation is correct, which there’s good reason to believe, I think this discovery is significant.”

alt Before the nanothreads can be used commercially, Badding wants to determine their properties and behavior in different conditions and to understand exactly how the benzene molecules link up. The studies could take years, he says. Then engineers will need to figure out how best to mass-manufacture them and incorporate them into existing industrial infrastructure for various uses. For a start, these threads seem poised to replace carbon fiber, which is weaker and heavier, in commercial products such as bicycle frames, golf clubs and airplane bodies.
Even further in the future, the nanothreads could perhaps stretch into space to deliver supplies to the International Space Station or interact with orbiting satellites. Seriously. Futurists have long imagined that a cable anchored on Earth and attached to a satellite in orbit could be the basis for a space elevator, but making a cable long and strong enough to resist the high-altitude winds and to ferry loads safely has proved a challenge. Conventional steel cables would break under their own weight. Diamond nanothreads could in principle be both light enough and tough enough to do the job.
Even if this particular nanothread proves incapable of sending supplies or humans into orbit, its discovery could pave the way for better alternatives. This is not the first time scientists have spawned diamond structures by tricking rings of carbon into unique configurations. Diamond-like carbons, also called amorphous carbons, are typically applied as coatings to other materials, such as the protective layer on a stainless steel pan. Gogotsi says that although hitting upon a new structure is surprising and interesting, this research reminds chemists that the discovery of other similar structures is not far off. “This group has shown that it’s another member of the family of diamond structures, and I’m sure that it’s not the last,” Gogotsi says. If so, then someday a space elevator may exist, and there might really be diamonds in the sky.



News from MRC.ORG.UA

Nano Iguana became a 1st place winner at 2017 MRS Science as Art Competition

Entry Nano Iguana became a 1st place winner at Science as Art Competition 2017: Nano-anatase (TiO2) crystals decorating graphene-like carbon, fabricated by oxidizing 2d Ti3C2 MXene powder, presented by A. J. Drexel Nanotechnology Institute and Department of Materials Science  and Engineering, Drexel University, USAResearch team from Drexel University lead by professor Yury Gogotsi produced an award-wining entry and became the 1st place winner in Science as Art competition at 2017 MRS Spring meeting in Phoenix.

1st Africa Energy Materials conference, 28 – 31 March 2017, Pretoria, South Africa

1st Africa Energy Materials conference On the first day of the conference, on March 28, the conference participants had an opportunity to attend a plenary lecture "Two-Dimensional Materials for High Rate and High-energy Density Storage" by invited plenary speaker professor Yury Gogotsi, Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University, and Director of the A.J. Drexel Nanomaterials Institute 

Workshop “Nanomaterials – based innovative engineering solution to ensure sustainable safeguard to indoor air “ NANOGUARD2AR 27-28 February, Lisbon, Portugal

altThe goal of the workshop is to attract the most recognized academic experts in the field of Innovative Nanomaterials for Environmental Application to share their knowledge and expertise on nanomaterials, nanoengineering and green building concepts.


Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds

Appointment ceremony of Honorary professorship for prof. Yury Gogotsi, Jilin University, Changchun, China on October 20, 2016

Honorary professor of Jilin University Yury Gogotsi  and Li Yuanyuan, President of Jilin University, academician of the Chinese Academy of Engineering

The official appointment ceremony of Honorary professorship for Dr. Yury Gogotsi took place in a ceremonial atmosphere at Jilin University, Changchun, Jilin Province, China on October 20, 2016.

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII), is held during 14-19 October, 2016 at Hunan Agriculture University together with Nanjing Tech University, Fudan University and University of Technology, Sydney.

Cleaning up electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene

MXene is a nanomaterial that is both thin and light, but also has the unique ability to block and absorb electromagnetic radiation, which makes it the perfect for use as shielding in electronics devices.

 According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material’s atomically thin layers.

Beijing University of Chemical Technology awarded prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor

Honorary Professor appointment ceremony at the Beijing University of Chemical TechnologyBeijing University of Chemical Technology have decided to award prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor based on his distinguished academic accomplishments. 

Prof. Yury Gogotsi became the winner of 2016 Nano Energy Award!

prof. Yury Gogotsi, Drexel UniversityNano Energy Award was presented to prof. Yury Gogotsi at 2016 Nanoenergy and Nanosystems Conference, which was held in Beijing on 13-15 July 2016.

Professor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China

meeting at Jilin UniversityProfessor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China, to meet research partners and discuss work questions and joint cooperation.

Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage, Jilin University, China

Director of Materials Research Centre Oleksiy Gogotsi visited interesting seminar lecture of Prof. Yury Gogotsi on MXenes for the students of Jilin University.

June 16, 2016 prof. Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage for the sudents and researchers of Jilin University, Changchun, China.

Nature Conference on Materials for Energy 2016

altProf.Yury Gogotsi at the Nature Journals’ Materials for Energy conference gave a talk on Synthesis, Properties And Energy Storage Applications of Two-Dimensional Carbides (Mxenes) in Wuhan University of Technology Conference Centre, Wuhan, China

Congratulations to Prof. Gogotsi on winning the 2016 Nano Energy Award

prof. Yury Gogotsi, Drexel UniversityThe award will be presented to prof. Yury Gogotsi at the Nanoenergy and Nanosystems 2016 conference, which will be held in Beijing between 13-15 July 2016.

Congratulations to professor Yury Gogotsi for being named a Thomson Reuters 2015 Highly Cited Researcher!

altProfessor Yury Gogotsi have been listed in the 2015 World’s Most Influential Scientific Minds.