Synthesis of carbon films by electrochemical etching of SiC with hydrofluoric acid in nonaqueous solvents

Rus На русском Eng In English

Synthesis of carbon films by electrochemical etching of SiC with hydrofluoric acid in nonaqueous solvents*

Jaganathan Senthilnathana, Chih-Chiang Wenga, Wen-Ta Tsaia, Yury Gogotsib, Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Masahiro Yoshimuraa,

a Promotion Centre for Global Materials Research (PCGMR), Department of Material Science and Engineering, National Cheng Kung University, Tainan, Taiwan

b Department of Materials Science and Engineering, and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA

*In Press, Accepted Manuscript, Available online 24 January 2014, http://dx.doi.org/10.1016/j.carbon.2014.01.028

Abstract

Carbon films on SiC have many applications, ranging from tribology to electrical energy storage. Formation of epitaxial or heteroepitaxial layers of carbon on SiC by “soft solution process,” such as electro- or photochemical ones, are attractive for various fields of application, decreasing the energy consumption and making the process compatible with electronic device fabrication. We have demonstrated formation of a carbon layer on SiC ceramics by electrochemical etching in a nonaqueous electrolyte. The selective etching of Si from SiC in a single step reaction with hydrofluoric acid (HF) in different organic solvents has been carried out and the role of polarity, surface tension, density, and viscosity of the organic solvents in the formation of the carbon layer has been investigated. The solution of 1:4.6 ratio HF and ethanol at low current densities (10 and 20 mA/cm2) allows the best control over selective etching of Si forming amorphous and ordered carbon on the SiC surface. The presence of an intense G band of graphitic carbon in Raman spectra and high resolution transmission electron microscopy analysis indicate formation of ordered carbon on the surface of SiC. X-ray diffraction shows that the etching rate of α-SiC is much higher when compared to β-SiC.

Fig. 1.   Raman spectra of unetched and etched SiC. (a) Unetched SiC (b) Etched at 10 mA/cm2, (c) Etched at 20 mA/cm2. Note: G = graphite band; D = disorder induced band; Inset shows the magnified carbon range of Raman spectra of samples etched at 10 and 20 mA/cm2 current densities.

 

Fig. 2.   SEM images of SiC etched with HF solutions in different solvents at fixed current densities 10 mA/cm2 (a) acetonitrile (b) acetone (c) water (d) isopropanol

Fig. 1. Raman spectra of unetched and etched SiC. (a) Unetched SiC (b) Etched at 10 mA/cm2, (c) Etched at 20 mA/cm2. Note: G = graphite band; D = disorder induced band; Inset shows the magnified carbon range of Raman spectra of samples etched at 10 and 20 mA/cm2 current densities

 

 

Fig. 2. SEM images of SiC etched with HF solutions in different solvents at fixed current densities 10 mA/cm2 (a) acetonitrile (b) acetone (c) water (d) isopropanol

Fig. 3.   (a) Voltage vs time diagram for SiC etched with HF solution in (i) water, (ii) alcohol, (iii) acetone, (iv) isopropanol, and (v) acetonitrile. (b) Voltage vs time diagram for SiC etched with 5 molar HF solution in ethanol at (i) 2.5 mA/cm2, (ii) 5.0 mA/cm2, (iii) 10 mA/cm2, (iv) 20 mA/cm2, (v) 40 mA/cm2, (vi) 60 mA/cm2, and (vii) 80 mA/cm2

 

Fig. 4.   SEM images of SiC etched in HF solution in ethanol at different current densities (a) unetched SiC (b) 5 mA/cm2 (c) 10 mA/cm2 (d) 20 mA/cm2 (e) 40 mA/cm2 (f) 60 mA/cm2. Note: Fig. 4 (d) inset shows a backscattered electron image of SiC etched at 20 mA/cm2. SEM micrographs of unetched SiC (g) and etched SiC (h) (at 20 mA/cm2).

Fig. 3. (a) Voltage vs time diagram for SiC etched with HF solution in (i) water, (ii) alcohol, (iii) acetone, (iv) isopropanol, and (v) acetonitrile. (b) Voltage vs time diagram for SiC etched with 5 molar HF solution in ethanol at (i) 2.5 mA/cm2, (ii) 5.0 mA/cm2, (iii) 10 mA/cm2, (iv) 20 mA/cm2, (v) 40 mA/cm2, (vi) 60 mA/cm2, and (vii) 80 mA/cm2

Fig. 4. SEM images of SiC etched in HF solution in ethanol at different current densities (a) unetched SiC (b) 5 mA/cm2 (c) 10 mA/cm2 (d) 20 mA/cm2 (e) 40 mA/cm2 (f) 60 mA/cm2. Note: Fig. 4 (d) inset shows a backscattered electron image of SiC etched at 20 mA/cm2. SEM micrographs of unetched SiC (g) and etched SiC (h) (at 20 mA/cm2)

Fig. 5.   TEM images of SiC etched in HF-ethanol (20 mA/cm2) produced at 200 kV

 

XRD patterns of unetched and etched SiC (a) unetched SiC (b) etched at 10 mA/cm2 (c) etched at 20 mA/cm2.

Fig. 5. TEM images of SiC etched in HF-ethanol (20 mA/cm2) produced at 200 kV

Fig. 6. XRD patterns of unetched and etched SiC (a) unetched SiC (b) etched at 10 mA/cm2 (c) etched at 20 mA/cm2.

Fig. 7.   Proposed reaction mechanism of SiC etching with HF in (5 M) ethanol solution at different current densities: (a) Si reacts with HF2- and follows the single-step mechanism at low current density (b) Si reacts with HF2- and follows single step mechanism at the optimum current density (c) Si reacts with OH- follows the two-step mechanism at high current density.

Fig. 7. Proposed reaction mechanism of SiC etching with HF in (5 M) ethanol solution at different current densities: (a) Si reacts with HF2- and follows the single-step mechanism at low current density (b) Si reacts with HF2- and follows single step mechanism at the optimum current density (c) Si reacts with OH- follows the two-step mechanism at high current density.

Source: www.sciencedirect.com

 

 

News from MRC.ORG.UA

Opening of the 2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes was opened on May 10, 2019 at Beijing University of Chemical Technology.

 
2nd International Conference on MXenes, Beijing, China on May 10-12, 2019

alt2nd International Conference on MXenes will be held in Beijing, China on May 10-12, 2019. The conference is hosted and organized by Beijing University of Chemical Technology. 

 
Project Meeting and Workshop under Horizon-2020 MSCA RISE CanBioSE project, 17-18 th of April 2019, Vilnius, Lithuania

altResearch team of Materials Research Centre led by Oleksiy Gogotsi take part in CanBioSe project meeting and Workshop held in Vilnius University, Vilnus, Lithuania. MRC team met with another CanBioSe project participants, presented MRC company. Also MRC director gave a talk on 2d materials MXenes and their possible applications.

 
MRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019, 2-5 April, 2019

altMRC team of engineers visited Addit Expo 3D, Plast Expo Ua, Kyiv Technical Fair and Coating Expo UA ‑ 2019 to learn more about last trends in polymer and coating industry and to discuss with conference participants actual questions and present their NANO2DAY research project.

 
Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Schematic of the cell configuration when the thickness of the electrode increases from 200 mm to 800mmMRC team (Materials Research Centre, Kiev, Ukraine) and research groups from Jilin University (Changchun, Cnina) and Drexel University (Philadelphia, USA) presented breakthrough research on increasing the specific capacity for high-power supercapacitors with coarse-grained carbon electrodes and thickness up to 800 μm, recently published in Electrochimica Acta. In this work, they reported on the trends in capacitance change for coarse-grained CDC and AC electrodes with the thickness from 200 to 800 mm.

 
Seminar on Novel 2D materials MXenes: Synthesis and applications, Institute of Physics, Kiev, Ukraine, February 13, 2019

altDirector of Materials Research Centre Oleksiy Gogotsi was invited by professor Galina Dovbeshko, to take part in scientific discussion and seminar, held at the Department of Physics of Biological Systems, Institute of Physics National Academy of Sciences of Ukraine. He gave a seminar lecture on synthesis and properties of novel two-dimensional material MXene. Also Oleksiy Gogotsi presented current research MSCA RISE project NANO2DAY where MRC is participating with MXene expertise.

 
NANOGUARD2AR Project Workshop: 29-30 January, 2019 Lisbon, Portugal Safety and Regulation of the Engineering Nanomaterials, 29-30 January, 2019 Lisbon, Portugal

altThe aim of the NANOGUARD2AR project 3rd Workshop is to discuss current the state-of-the-art on Safety of the Nanomaterials Application to the Indoor Air Quality Control, including green building concept and overall progress with Engineering Nanomaterials Regulation in EU and worldwide

 
Congratulations to Professor Yury Gogotsi with being elected as Fellow of the European Academy of Sciences!

professor Yury Gogotsi, Drexel UniversityIn January 2019 Professor Yury Gogotsi was elected as a Fellow of the European Academy of Sciences (EURASC).

Professor Yury Gogotsi is a leading Ukrainian and American scientist in the field of material chemistry, professor at Drexel University, Philadelphia, PA since the year 2000 in the fields of Materials Science and Engineering and Nanotechnology.

 
ADVANCED SCIENCE NEWS: Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else

Professor Yury Gogotsi, Drexel University, Philadelphia, USA

Yury Gogotsi was a chemist from the very beginning. He feels the excitement of scientific discovery, and cannot imagine doing anything else. It was love at first sight for Yury Gogotsi. 

Gogotsi feels that the greatest recent step in the field of materials science was the discovery of new 2D materials, the “building blocks of the future”. He is very enthusiastic about the use of nanotechnology to generate “new artificial materials, structures and devices from nanoscale building blocks” and the increased application of “modeling, simulation, and machine learning for solving materials science problems”, though he admits concern regarding the unknown effects that artificial intelligence will have on our future lives. He is also conscious of the energy required for computation and the importance of exploiting renewable resources to develop new technologies – ones that reduce energy consumption. “We need revolutionary discoveries here,” he says. “Evolutionary development won’t be enough.”

 
NANO2DAY project: Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018

altDue to the NANO2DAY project under european scientific  research program HORIZON 2020 Dr. Vitalis Leisis, Kaunas Unniversity of Technology (Kaunas, Lithuania), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on November -December 2018. 

 
Horizon 2020 NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi and Veronika Zahorodna visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018

alt

NANO2DAY project participants from the Materials Research Center (MRC), Kiev, Ukraine, Alexey Gogotsi (MRC project leader) and Veronika Zahorodna (early-staged researcher, in the framework of international scientific cooperation on the Horizon 2020 program, visited the partner organization Drexel University, Philadelphia, USA, on September-October 2018 in accordance with the travel plan on the project to perform planned project activities.

 
MRC director Oleksiy Gogotsi at the work meeting in Drexel University, Philadelphia, USA, made a presentation of the company and its activitties in international r&d projects

altDirector of Materials Research Centre (Kiev, Ukraine) Oleksiy Gogotsi  at the work meeting in Drexel University, Philadelphia, USA, made a  presentation of the company and its activitties in international research and development projects. Also Oleksiy Gogotsi presented HORIZON 2020 MSCA RISE Project №777810 NANO2DAY: MULTIFUNCTIONAL POLYMER COMPOSITES DOPED WITH NOVEL 2D NANOPARTICLES FOR ADVANCED APPLICATIONS.

 
Seminar on 2D Materials Beyond Graphene by prof. Zdenek Sofer University of Chemistry and Technology (Prague) at Drexel University, USA, on October 18, 2018

altDuring NANO2DAY project visit  to Drexel University (Philadelphia, USA), director of Materials Research Centre (kiev, Ukraine) Oleksiy Gogotsi met with Assoc. Prof. Zdeněk Sofer from University of Chemistry and Technology, Prague (Chech Republic) and attended his seminar on nanomaterials. Prof. Zdenek Sofer in Drexel University gave an excellent seminar on 2D Materials Beyond Graphene.

 
NANO2DAY project: research scientist Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018

NANO2DAY project Maksym Plakhotnyuk, DTU visited MRC, November 2018Due to the NANO2DAY project under european scientific  research program HORIZON 2020 research scientist  Maksym Plakhothyuk, Technical University of Denmark (DTU), visited Ukrainian partner Materials Research Centre, Kiev, Ukraine on September-November 2018. 

 
Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.