Highly Controllable and Green Reduction of Graphene Oxide to Flexible Graphene Film with High Strength

 

Materials Research Bulletin, Volume 48, Issue 11, November 2013, Pages 4797–4803

 

Highly Controllable and Green Reduction of Graphene Oxide to Flexible Graphene Film with High Strength

Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets.

  • Wubo Wana,Zongbin Zhaoa, ,Han Hua,Yury Gogotsia, b,Jieshan Qiua,
  • a Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
  • b Department of Materials Science and Engineering, and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA

Fig. 1. FE-SEM image of GO with a free-standing sheets (a), inset demonstrates the Tyndall effect of GO. FE-SEM image of CCG nanosheets aggregated after removal of the functional groups (b). Inset picture shows the CCG nanosheets deposited at the bottom of the container.Fig. 2. (a) FT-IR spectra of GO and CCG. (b) XPS spectra of GO and CCG showing C1s and O1s peaks. High resolution C1s XPS fitting curves of GO (c) and CCG (d) produced using sodium citrate reduction.

Highlights

•Graphene was synthesized by an effective and environmentally friendly approach.
•We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene.
•Flexible graphene films were prepared by self-assembly of the graphene sheets.
•The strength of the graphene films depends on the reduction degree of graphene.

Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective Fig. 3. Raman spectra of Graphite, GO and CCG, inset pictures show the detailed 2D peaks at the wavelength from 2400 cm−1 to 3000 cm−1.and environmentally friendly approach.

Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV-vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film.

This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.


Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets.

Fig. 4. (a) Stepwise reduction of GO to form CCG. (b) UV-vis absorption spectra of GO dispersed in water with different concentrations. The inset demonstrates the linear relationship between the maximum absorbance at the wavelength of 231 nm and the concentration of GO. (c) UV-vis spectra of GO dispersion change as a function of reaction time (from 0 to 18 h), the maximum absorbance of GO at 231 nm gradually red shifts to 268 nm.

Fig. 5. Photograph of the apparatus for measurement of I-V curves (a), and the I-V curves of the products obtained from different reaction times (b).

Fig. 4. (a) Stepwise reduction of GO to form CCG. (b) UV-vis absorption spectra of GO dispersed in water with different concentrations. The inset demonstrates the linear relationship between the maximum absorbance at the wavelength of 231 nm and the concentration of GO. (c) UV-vis spectra of GO dispersion change as a function of reaction time (from 0 to 18 h), the maximum absorbance of GO at 231 nm gradually red shifts to 268 nm.
Fig. 5. Photograph of the apparatus for measurement of I-V curves (a), and the I-V curves of the products obtained from different reaction times (b).

    Fig. 6. (a) Digital photograph of a free-standing self-assembled graphene film, inset picture shows a strip of the film. (b) TEM image of CCG. (c) Cross sectional views of a self-assembled film, inset SEM image shows the side view of a CCG film at a higher magnification. (d) Optical transmittance of GO and CCG films. Inset shows photographs of GO (left) and CCG (right) films.

Fig. 7. (a) Tensile strength of CCG films prepared at different reaction times. (b) Digital photograph of a strip of graphene film supporting 275 g of load (the weight and the clamp), which is equal to 48 MPa of stress.

Fig. 6. (a) Digital photograph of a free-standing self-assembled graphene film, inset picture shows a strip of the film. (b) TEM image of CCG. (c) Cross sectional views of a self-assembled film, inset SEM image shows the side view of a CCG film at a higher magnification. (d) Optical transmittance of GO and CCG films. Inset shows photographs of GO (left) and CCG (right) films. Fig. 7. (a) Tensile strength of CCG films prepared at different reaction times. (b) Digital photograph of a strip of graphene film supporting 275 g of load (the weight and the clamp), which is equal to 48 MPa of stress.

Source: www.sciencedirect.com

RELATED ITEMS:
Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes

 

News from MRC.ORG.UA

Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.

 
Professor Yury Gogotsi, Drexel University, USA, gave a plenary lecture at the 2018 Energy Future Conference in Sydney, Australia, 5-7 February 2018

Professor Gogotsi gave a plenary lecture on  two-dimensional materials MXenes

Professor Yury Gogotsi, Drexel University, USA,  gave a plenary lecture on February 06, 2018 and chaired a plenary session on February 05 at the Energy Future Conference (EF3 Conference 2018) in Sydney. EF3 Conference 2018 brought together scientists, engineers, policy makers, investors, academia, and industry to discuss the latest advances in energy technology. 

 
US-Czech Conference on Advanced Nanotechnology and Chemistry 17 th – 18th January 2018, Prague, Czech

US-Czeh conference on advanced nanotechnologiesMore than 30 speakers from USA and Czech were invited, among them also was invited outstanding scientist, professor Yury Gogotsi, founder director of Drexel Nanomaterials Institute in Drexel University, USA.

 
ICEnSM 2017. 2017 International Conference on Energy Storage Materials, Shenzhen, China, November 18-21, 2017

The First International Conference on Energy Storage Materials Professor Yury Gogotsi from Drexel University, USA, has won the 2017 Energy Storage Materials Award, which is awarded by the journal Energy Storage Materials. The Award will be presented to Professor Gogotsi at the ICEnSM 2017 (2017 International Conference on Energy Storage Materials), which will be held in Shenzhen, China, on Nov. 18-21, 2017.

 
Congratulations to professor Yury Gogotsi for being named 2017 Highly Cited Researcher in two categories!

altHis research ranks among the top 1% most cited works in his field and during its year of publication, earning the mark of exceptional impact. This year is the first time Yury Gogotsi made this list in two categories - Materials Science and Chemistry.

 
Nanodiamonds Can Prevent Lithium Battery Fires
 
Session dedicated to HORIZON-2020-MSCA-RISE project 690853 «Asymmetry of biological membrane: theoretical, experimental and applied aspects» ( assymcurv ), 5th International Conference "Nanobiophysics-2017"

ilt logoOleksiy Gogotsi, director of Materials Research Center presented join research on synthesis and biomedical applications of 2D carbides MXenes.

 
Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes.