International Journal "Applied Ceramic Technology" published paper, based on the studies involving MRC, about TiO2 and WO3 films photo-catalytic properties on brass and practical application of the given coatings for brass products

 TiO2 Films on Brass
Structure, mechanical and photo-catalytic properties of titanium dioxide (TiO2) and tungsten oxide (WO3) films on a brass substrate.
Rus На русском Eng In English

Based on the studies involving MRC, international edition Applied Ceramic Technology has published the paper about photo-catalytic properties of tungsten oxide and titanium dioxide on brass substrate as well as practical application of the given coatings for brass products

Photocatalytic WO3 and TiO2 Films on Brass

Olha Mashtalir1,2, Murat Kurtoglu2,3,†, Sergey Pogulay1, Alexey Gogotsi1, Michael Naguib2, Yury Gogotsi2

1 Materials Research Centre, Kiev, 03680, Ukraine

2 Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania

3 Gurallar ArtCraft Inc., Kutahya, Turkey

†Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA

Cite: Mashtalir, O., Kurtoglu, M., Pogulay, S., Gogotsi, A., Naguib, M. and Gogotsi, Y. (2012), Photocatalytic WO3 and TiO2 Films on Brass. International Journal of Applied Ceramic Technology. doi: 10.1111/j.1744-7402.2012.02843.x

 On the SEM picture: brass with titanium dioxide coating (а, b) and brass surface covered with tungsten oxide (с, d)

 

This paper reports on the structure, mechanical, and photocatalytic properties of titanium dioxide (TiO2) and tungsten oxide (WO3) films on a brass substrate. TiO2 and WO3 films have been successfully deposited on brass by a simple sol-gel dip-coating method and it has been shown that, while both films possess photocatalytic properties, WO3 films were superior to TiO2. Higher surface area and rod-like morphology of WO3 films might have contributed to their higher photocatalytic activity. Nanoindentation results have shown that both films attach well to the substrate and possess good mechanical properties.

On the SEM picture: brass with titanium dioxide coating (а, b) and brass surface covered with tungsten oxide (с, d)

Over the last few decades, interest in heterogeneous photocatalysis has been growing because of its promising applications in self-cleaning and antibacterial coatings, water and air purification systems, solar cells, and hydrogen production by water dissociation.

TiO2 has been one of the most studied materials among transition metal oxides because of its unique photoinduced catalytic activity, superhydrophilicity, nontoxicity, physical stability, and chemical inertness. Although TiO2 is still the gold standard, many other semiconductors, such as WO3, CdS, SnO2, SiO2, ZrO2, ZnO, Nb2O3,Fe2O3, SrTiO3, etc., have also been identified as potential photocatalysts. In particular, tungsten oxide (WO3) is a widely studied material because of its high photoactivity.

Therefore, film-substrate compatibility is an additional consideration required when selecting photocatalysts for film applications. While glass and ceramic materials are still the most popular of all substrates for photocatalytic films, metals have also attracted some attention, with the majority of research performed on stainless steel.

Brass is a very common decorative material because of its bright gold-like appearance and is widely used on railings, door handles, and other components that are touched by hands and would benefit from anti-bacterial coatings. Decorative panels on constructions would benefit from self-cleaning and protective coatings that would help to maintain the gold-like appearance of polished surfaces for a longer time.

That is why titanium dioxide and tungsten oxide films on a brass substrate were chosen as the subject of the study. Firstly one evaluated photocatalytic and mechanical properties of both films and then the results were compared with each other to study out what semiconductor is more promising as a photocatalitically active film on brass for practical applications.

Related items:

Materials Research Centre (MRC, Kiev, Ukraine) in cooperation with Drexel University (Drexel University, Philadelphia, USA) designed and produced the first in Ukraine active sample of dye-sensitized solar cell on ТіО2.

 

 

 

News from MRC.ORG.UA

Nano Iguana became a 1st place winner at 2017 MRS Science as Art Competition

Entry Nano Iguana became a 1st place winner at Science as Art Competition 2017: Nano-anatase (TiO2) crystals decorating graphene-like carbon, fabricated by oxidizing 2d Ti3C2 MXene powder, presented by A. J. Drexel Nanotechnology Institute and Department of Materials Science  and Engineering, Drexel University, USAResearch team from Drexel University lead by professor Yury Gogotsi produced an award-wining entry and became the 1st place winner in Science as Art competition at 2017 MRS Spring meeting in Phoenix.

 
1st Africa Energy Materials conference, 28 – 31 March 2017, Pretoria, South Africa

1st Africa Energy Materials conference On the first day of the conference, on March 28, the conference participants had an opportunity to attend a plenary lecture "Two-Dimensional Materials for High Rate and High-energy Density Storage" by invited plenary speaker professor Yury Gogotsi, Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University, and Director of the A.J. Drexel Nanomaterials Institute 

 
Workshop “Nanomaterials – based innovative engineering solution to ensure sustainable safeguard to indoor air “ NANOGUARD2AR 27-28 February, Lisbon, Portugal

altThe goal of the workshop is to attract the most recognized academic experts in the field of Innovative Nanomaterials for Environmental Application to share their knowledge and expertise on nanomaterials, nanoengineering and green building concepts.

 
MATERIAL WITNESSES — RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXEL’S 2D MXENE

Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

 
Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds

 
Appointment ceremony of Honorary professorship for prof. Yury Gogotsi, Jilin University, Changchun, China on October 20, 2016

Honorary professor of Jilin University Yury Gogotsi  and Li Yuanyuan, President of Jilin University, academician of the Chinese Academy of Engineering

The official appointment ceremony of Honorary professorship for Dr. Yury Gogotsi took place in a ceremonial atmosphere at Jilin University, Changchun, Jilin Province, China on October 20, 2016.

 
12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)

12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII)12th IUPAC International Conference on Novel Materials and their Synthesis (NMS-XII), is held during 14-19 October, 2016 at Hunan Agriculture University together with Nanjing Tech University, Fudan University and University of Technology, Sydney.

 
Cleaning up electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene

MXene is a nanomaterial that is both thin and light, but also has the unique ability to block and absorb electromagnetic radiation, which makes it the perfect for use as shielding in electronics devices.

 According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material’s atomically thin layers.

 
Beijing University of Chemical Technology awarded prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor

Honorary Professor appointment ceremony at the Beijing University of Chemical TechnologyBeijing University of Chemical Technology have decided to award prof. Yury Gogotsi, Drexel University (USA) the title of Honorary Professor based on his distinguished academic accomplishments. 

 
Prof. Yury Gogotsi became the winner of 2016 Nano Energy Award!

prof. Yury Gogotsi, Drexel UniversityNano Energy Award was presented to prof. Yury Gogotsi at 2016 Nanoenergy and Nanosystems Conference, which was held in Beijing on 13-15 July 2016.

 
Professor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China

meeting at Jilin UniversityProfessor Yury Gogotsi, director of Drexel Nanomaterials Institute, Drexel University, USA, and director of Materials Research Centre Oleksiy Gogotsi visited Jilin University in Changchun, China, to meet research partners and discuss work questions and joint cooperation.

 
Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage, Jilin University, China

Director of Materials Research Centre Oleksiy Gogotsi visited interesting seminar lecture of Prof. Yury Gogotsi on MXenes for the students of Jilin University.

June 16, 2016 prof. Yury Gogotsi gave a seminar lecture on Two-Dimensional Carbides and Nitrides (MXenes) and Their Applications in Energy Storage for the sudents and researchers of Jilin University, Changchun, China.

 
Nature Conference on Materials for Energy 2016

altProf.Yury Gogotsi at the Nature Journals’ Materials for Energy conference gave a talk on Synthesis, Properties And Energy Storage Applications of Two-Dimensional Carbides (Mxenes) in Wuhan University of Technology Conference Centre, Wuhan, China

 
Congratulations to Prof. Gogotsi on winning the 2016 Nano Energy Award

prof. Yury Gogotsi, Drexel UniversityThe award will be presented to prof. Yury Gogotsi at the Nanoenergy and Nanosystems 2016 conference, which will be held in Beijing between 13-15 July 2016.

 
Congratulations to professor Yury Gogotsi for being named a Thomson Reuters 2015 Highly Cited Researcher!

altProfessor Yury Gogotsi have been listed in the 2015 World’s Most Influential Scientific Minds.