True Performance Metrics in Electrochemical Energy Storage. Science

А dramatic expansion of research in the area of electrochemical energy storage (EES) during the past decade has been driven by the demand for EES ...

True Performance Metrics in Electrochemical Energy Storage
Y. Gogotsi * and P. Simon **
Exceptional performance claims for electrodes used in batteries and electrochemical capacitors often fail to hold up when all device components are included.

______________________________________

* Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA.

** Universit? Paul Sabatier– Toulouse III, CIRIMAT UMR-CNRS 5085, 118 Route de Narbonne, 31062 Toulouse, France. E-mail: gogotsi@drexel.
edu, Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

А dramatic expansion of research in the area of electrochemical energy storage (EES) during the past decade has been driven by the demand for EES in handheld electronic devices, transportation, and storage of renewable energy for the power grid . However, the outstanding properties reported for new electrode materials may not necessarily be applicable to performance of electrochemical capacitors (ECs). These devices, also called supercapacitors or ultracapacitors , store charge with ions from solution at charged porous electrodes. Unlike batteries, which store large amounts of energy but deliver it slowly, ECs can deliver energy faster (develop high power), but only for a short time. However, recent work has claimed energy densities for ECs approaching or even exceeding that of batteries. Prof. Y. Gogotsi and Prof. P. Simon in that paper, published in Science Magazine, show that even when some metrics seem to support these claims, actual device performance may be rather mediocre.They focused in that paper on ECs, but these considerations also apply to lithium (Li)—ion batteries.

Increasing the energy density of ECs usually comes at the cost of losses in cyclability or power, which are the most important properties of ECs and without which they become mediocre batteries. A major effort has been directed toward increasing the energy density of ECs by either increasing the capacitance of the material, or the operation voltage window, or both.

Some recent publications on graphene and nanotube-based materials have used Ragone plots to argue that supercapacitors can achieve the energy density of batteries.

Reporting the energy and power densities per weight of active material alone on a Ragone plot may not give a realistic picture of the performance that the assembled device could reach because the weight of the other device components also needs to be taken into account. ECs are similar to Li-ion batteries .

gogotsi-energy-density

A tale of two plots. One way to compare electrical energy storage devices is to use Ragone plots ( 10), which show both power density (speed of charge and discharge) and energy density (storage capacity). These plots for the same electrochemical capacitors are on a gravimetric (per weight) basis in (A) and on a volumetric basis in (B). The plots show that excellent properties of carbon materials will not translate to medium- and large-scale devices if thin-fi lm and/or low-density electrodes are used ( 10).

By presenting energy and power densities in a consistent manner, researchers can facilitate introduction of new materials and fi nd solutions for EES challenges the world faces. National and international testing facilities should be created for benchmarking electrodes and devices similar to the facilities that exist for benchmarking photovoltaics. Clear rules for reporting the performance of new materials for EES devices would help scientists who are not experts in the fi eld, as well as engineers, investors, and the general public, who rely on the data published by the scientists, to assess competing claims. But numerous scientists who have been publishing ridiculous claims about enormous capacity of novel battery materials and energy density of electrochemical capacitors exceeding that of Li-ion batteries in the past couple of years will not like this discourse.

Source: science.mag.org

 

News from MRC.ORG.UA

Congrats to professor Yury Gogotsi on winning the 2017 Changbai Mountain Friendship Award

Receiving a Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.Professor Yury Gogotsi from Drexel University, USA, received the 2017 Changbai Mountain Friendship Award from the vice-governor of Jilin Province at the National Day foreign experts reception.

 
Congarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award

yury gogotsiCongarstulations to professor Yury Gogotsi from Drexel University, USA, who has won the 2017 Energy Storage Materials Award,and is awarded by Energy Storage Materials journal.

 
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

An international team of researchers, including Drexel's Yury Gogotsi, PhD, observed that ions will forgo their typical alternating charge ordering when they are forced to jam into a small, sub-nanometer-sized, space — a behavior modification not unlike people relinquishing personal space in order to pack into a crowded subway car. The discovery could lead to safer energy storage devices and better water filtration membranes.In their most recent paper in Nature Materials researcher from Drexel University led by prof. Yury Gogotsi showed that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. The non-Coulombic ordering is further enhanced in the presence of an applied electric potential. 

 
Researcers from Drexel University have developed a recipe that can turn electrolyte solution into a safeguard against the chemical process that leads to battery-related disasters

Recipe for Safer Batteries — Just Add DiamondsResearchers described a process by which nanodiamonds — tiny diamond particles 10,000 times smaller than the diameter of a hair — curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

 
Triangle Talks with Yury Gogotsi

alt

Yury Gogotsi is a researcher in the Drexel University Nanomaterials Group. He and his colleagues discovered a series of novel materials known as MXenes. 

 
Yury Gogotsi is the most influential scientist of modern Ukraine

altThe life of Yury Gogotsi is a constant back and forth between the top laboratories in the world, writing articles in the best scientific journals and research materials that can change the world around them. 

 
Professor Yury Gogotsi , Drexel University, USA, received an Honorary Doctorate from Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine, June 20, 2017.

Deputy Directors of IPMS NAS professors Dr. Ragulya, Dr. Baglyuk, Mr. Zavorotnyi, Honorary Professor of IPMS NASU Yury Gogotsi,  Scientific Secretary Dr. Kartuzov and Dr. Firstov Professor Yury Gogotsi , Drexel University, USA,  received an Honorary Doctorate from Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine.

 
Professor Yury Gogotsi was speaking about nanotechnology in energy storage at the World Science Festival 2017

Professor Yury Gogotsi at World Science Festival 2017Join world-class nanoscientists and environmental leaders to explore how the capacity to harness molecules and atoms is accelerating spectacular inventions — including light-weight “wonder materials,” vital energy-storage technologies, and new sources of renewable energy — which promise to redefine the very future of energy.

 
MXenes are at the forefront of 2D materials research

alt

Research of 2D MXenes is prominently featured in an article in Chemical & Engineering News - bulletin of the American Chemical Society that goes in hard copy to more than 150,000 subscribers. No doubt, MXenes are at the forefront of 2D materials research.

 
IDEATION Seminars: A New Platform for Innovation Management, Promotion, Licensing, Technology Transfer and Commercialization, June 7 at 14:30, KPI, Kyiv

altSpeakers:  Victor Korsun and Douglas Graham

 
Nano Iguana became a 1st place winner at 2017 MRS Science as Art Competition

Entry Nano Iguana became a 1st place winner at Science as Art Competition 2017: Nano-anatase (TiO2) crystals decorating graphene-like carbon, fabricated by oxidizing 2d Ti3C2 MXene powder, presented by A. J. Drexel Nanotechnology Institute and Department of Materials Science  and Engineering, Drexel University, USAResearch team from Drexel University lead by professor Yury Gogotsi produced an award-wining entry and became the 1st place winner in Science as Art competition at 2017 MRS Spring meeting in Phoenix.

 
1st Africa Energy Materials conference, 28 – 31 March 2017, Pretoria, South Africa

1st Africa Energy Materials conference On the first day of the conference, on March 28, the conference participants had an opportunity to attend a plenary lecture "Two-Dimensional Materials for High Rate and High-energy Density Storage" by invited plenary speaker professor Yury Gogotsi, Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University, and Director of the A.J. Drexel Nanomaterials Institute 

 
Workshop “Nanomaterials – based innovative engineering solution to ensure sustainable safeguard to indoor air “ NANOGUARD2AR 27-28 February, Lisbon, Portugal

altThe goal of the workshop is to attract the most recognized academic experts in the field of Innovative Nanomaterials for Environmental Application to share their knowledge and expertise on nanomaterials, nanoengineering and green building concepts.

 
MATERIAL WITNESSES — RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXEL’S 2D MXENE

Researchers from the A.J. Drexel Nanomaterials Institute have been studying MXene for nearly half a decade. (L-R): Olekisy Gogotsi (Director of Materials Research Center, Ukraine), Gabriel Scull, Babak Anasori, Mohamed Alhabeb, Yury Gogotsi.

More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

 
Prof. Gogotsi has been included in the list of ISI Highly Cited researchers for the 3rd year in the row

altProf. Gogotsi has been named among Highly Cited Researchers 2016, representing worlds most influential scientific minds