![]() |
Graduation Ceremony of the Six Class of the Erasmus Mundus Master Course in Materials for Energy Storage and Conversion of Amien University took place in the Logis du Roy,in Amiens , France, on September 14, 2011. Students of Class 6 have just taken their Master Thesis Defence and none of them failed. So 27 students graduated on September 15th, 2011.
The European Master's Course 'Materials for Energy Storage and Conversion' "MESC" is designed to provide a 2-year (120 ECTS) education program in Materials Science and Electrochemistry at 5 universities in 3 European countries : France (Marseille, Toulouse, Amiens), Spain (Cordoba), Poland (Warsaw). These universities host world-renowned, leading research laboratories in the field of energy-related materials.
MESC receives funding from the European Commission as an Erasmus Mundus Master Course. Erasmus Mundus supports top-quality European Master's Courses and enhances the visibility and attractiveness of European Higher Education in Third Countries.
Students from all over the world can apply for MESC. They will attend the same classes and each of them will be awarded the same diploma at the end of the 2 years course. Please note that you can apply for a maximum of 3 Erasmus Mundus Master courses.
Typically, The MESC Master Course welcomes between 20 and 30 students with various kinds of scholarships:
- Erasmus Mundus Cat A
- Erasmus Mundus Cat B
- Alistore ERI
- CIC Energigune
- Private companies (Umicore, Renault, Total, ...)





MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.
Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year! Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics. Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.
Congratulations to all collaborators with this interesting joint work!
Thank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties
Dr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.
MRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field. 
Together with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.
