![]()  | 
Synthesis of quasi-oriented a-MoO3 nanobelts and nanoplatelets on TiO2
 coated glass
Received 19th February 2011, Accepted 24th March 2011
DOI: 10.1039/c1jm10752f (Journal of Materials Chemistry)
 This work was performed at Drexel University with
 funding provided by ArtCraft Glassware. SEM by
 Murat Kurtoglu, color and design by Pavel Gogotsi
 (Drexel University).
 Using a simple yet effi cient wet-chemical method followed by
 calcination, various morphologies of ?-MoO3 structures are
 produced, including nanobelts .
Researchers report on a new method to produce quasi-oriented a-MoO3 nanobelts on TiO2 coated glass substrates. Using a simple yet efficient wet-chemical method with subsequent calcination, various morphologies of a-MoO3 including oriented nanobelts, rods and platelets were produced. The crystal morphology can be controlled by changing the substrate and/or the process parameters. Some applications of the resulting structures were demonstrated by coating them with TiO2 and carbon. The photocatalytic activity of the TiO2 coated a-MoO3 nanobelts was several times higher than that of the smooth TiO2 coatings prepared on soda-lime glass. A very thin layer (20–30 nm) of carbon coated on nanobelts by sputtering resulted in a highly light absorbing film with an average reflectivity of 4%, while fluorosilane coated nanobelts showed superhydrophobic properties.
The next step of the work is to scale down the size of the electrodes and improve the dry etching procedure for removing metal atoms from metal carbides to make the process even more compatible with commercial microfabrication technology.
To read the full text of the article


 
MXenes potential applications include sensors, wound healing materials, and drug delivery systems. A recent study explored how different synthesis methods affect the safety and performance of MXenes. By comparing etching conditions and intercalation strategies, researchers discovered that fine-tuning the surface chemistry of MXenes plays a crucial role in improving biocompatibility. These results provide practical guidelines for developing safer MXenes and bring the field one step closer to real biomedical applications.
Exellent news, our joint patent application with Drexel University on highly porous MAX phase precursor for MXene synthesis published. Congratulations and thanks to all team involved!
Last Call! Have you submitted your abstract for IEEE NAP-2025 yet? Join us at the International Symposium on "The MXene Frontier: Transformative Nanomaterials Shaping the Future" – the largest MXene-focused conference in Europe this year!  Final Submission Deadline: May 15, 2025. Don’t miss this exclusive opportunity to showcase your research and engage with world leaders in the MXene field!
We are excited to announce the publication of latest review article on MXenes in Healthcare. This comprehensive review explores the groundbreaking role of MXenes—an emerging class of 2D materials—in revolutionizing the fields of medical diagnostics and therapeutics.  Read the full article here: https://doi.org/10.1039/D4NR04853A.
Congratulations and thank you to our collaborators from TU Wien and CEST for very interesting work and making it published! In this work, an upscalable electrochemical MXene synthesis is presented. Yields of up to 60% electrochemical MXene (EC-MXene) with no byproducts from a single exfoliation cycle are achieved.
Congratulations to all collaborators with this interesting joint work!
Thank you to our collaborators for the amazing joint work recently published in Graphene and 2D Nanomaterials about  MXene–silk fibroin composite films aiming to develop materials with tunable electronic and thermal properties
Dr. Oleksiy Gogotsi, director of MRC and Carbon-Ukraine, innovative companies that are among the leaders on the world MXene market, visited 2024 MRS Fall Meeting & Exhibit. together with Dr. Maksym Pogorielov, Head of Advanced Biomaterials and Biophysics Laboratory, University of Latvia.
MRC and Carbon-Ukraine team visited the 3rd International MXene conference held at Drexel University on August 5-8, 2024. Conference brought together the best reserchers and leading experts on MXene field. 
Together with colleagues from the University of Latvia, MRC/Carbone Ukraine, Adam Mickiewicz University, University Clinic Essen, and others, we have developed a novel concept involving the binding of antibodies to MXenes. In our research, we utilized anti-CEACAM1 antibodies to develop targeted photo-thermal therapy for melanoma (in vitro), paving the way for future in vivo studies and clinical trials. For the first time, we demonstrate the feasibility of delivering MXenes specifically targeted to melanoma cells, enabling the effective ablation of cancer cells under near-infrared (NIR) light. This new technique opens up vast potential for the application of MXenes in cancer treatment, diagnostics, drug delivery, and many other medical purposes.
