Wet Scrubber for cleaning of industrial exhaust stream with capacity 1000m3/h, absorption technology with CaOH solution

Wet scrubber, 3d model

Wet scrubber, designed and manufactured by MRC

 

Rus На русском Eng In English

Application and design requirements.

Scrubber components:

- multi-section scrubber frame;
- irrigation system with centered tangential jets (replaceable);
- with sludge regulative float device;
- emergency water supply system

Contaminated gas is fed by inclined gas flue to the bottom of the scrubber and rises up the frame. On the top of the scrubber there are 3 irrigation tiers, which consist of centrifugal jets. Lime-water suspension  (CaCO3), that is under pressure, is spraying. Drops of aqueous solution CaCO3, are falling due to gravity towards contaminated gas.  Water drops capture dust articles happens due to inertial and diffusion mechanism, hydrodynamic and electrostatic forces and turbulent diffusion.  Gas cleaning from sulfur oxides is based on absorption technology. After contact of lime-water suspension with gas, reaction takes place:

control system and automatics for the scrubber

Control system and automatics for the scrubber

СаСО3 + SО2 + ½ Н2О = СаSО3·1/2Н2О + СО2
Oxygen, which is in the products of combustion, oxidizes the calcium sulfate in neutral sulphate (gypsum):
СаSO3 ·1/2H2O +1/2O2 = CaSO4·2H2O

Exhaust aqueous solution with gypsum and captured dust is accumulated in the bottom of the scrubber.  Peeled gas is fed by gas flues, which are located on the top of the device. For pulling of the sludge there is a special device, which consists of float camera and throttle control, that supports a given level of sludge in the hopper.

Scrubber frame is designed for organization of gas flows and water drops. Irrigation system is designed for supplying and spraying of the water in the scrubber frame. Drainage sludge mechanism is designed for automatic removal of sludge from scrubber frame. Emergency water supply system is designed for stopping of water supplying if it is impossible  to remove sludge from scrubber frame.

.

General view of the wet scrubber with capacity 1000 kg/hour

General view of the wet scrubber with capacity 1000 m3/hour

engineering design drawings and 3d model of the wet scrubber

Engineering design drawings and 3d model of the wet scrubber

 

 

 

 

 

 

 

 

 

 

 

 

 

News from MRC.ORG.UA

Congratulations to Professor Yury Gogotsi who received prestigious Chineese Government Friendship Award, Beijing, Great Hall of the People, September 29, 2018

Yury Gogotsi recevide Friendship Award from Chinas GovernmentChina"s Government Friendship Award ceremony was held in Great Hall of the People, in Beijing on September 29, 2018, the award to the winners were presented by the Vice Premier of China Liu He. The People's Republic of China Government Friendship Award is China's highest award for foreign experts who have made outstanding contributions to the country's economic and social progress.

 
Spray-On Antennas Could Be the Tech Connector of the Future

Invisibly thin MXene antennas can be applied to a variety of substrates and perform better than antenna materials currently used in mobile devices.

Now, researchers at Drexel University have developed a method for creating nearly invisible antennas on almost any surface by literally spraying them on like paint. The antennas are made from a special two-dimensional metallic material called MXene. MXene powder can be dissolved in water to create a paint that is then airbrushed on. In tests, even a layer as thin as just 62 nanometers – thousands of times thinner than a sheet of paper – could communicate effectively. Performance maxed out at just 8 microns, a point at which the spray-on antennas worked just as well as those currently used in mobile devices and wireless routers.

 
Congratulations to professor Yury Gogotsi, professor Rodney S. Ruoff and professor Patrice Simon with being named by Clarivate Analythics among of the 17 most cited and influenced world-class scientists in 2018!

Professor Yury GogotsiThis designation celebrates researchers whose influence is comparable to that of Nobel Prize recipients, as attested by exceptionally high citation records within the Web of Science. 

 
15th YES Annual Meeting: “The Next Generation of Everything” September 13 – 15, 2018

alt

Yalta European Strategy (YES)  introduced nightcap events for the participants of the 15th YES Annual Meeting to wind down at the end of the first conference day and discuss interesting topics in an informal atmosphere. YES invited leading politicians, opinion makers and business leaders to present their views on modern trends that define the world and Ukraine. The nightcaps were organized in partnership with the U.S. Embassy in Ukraine and America House, International Renaissance Foundation, Ukrainian-Jewish Encounter and the Atlantic Council, Mejlis of the Crimean Tatar people and Ministry of Information Policy of Ukraine, Western NIS Enterprise Fund and Embassy of the Republic of Estonia.

 
2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties, September 09-14, 2018

2018 IEEE International Conference on “Nanomaterials Applications & Properties”At the poster session of the conference Oleksiy Gogotsi presented two poster presentations on advanced nanomaterials for different applications, prepared with colleagues from Drexel University, USA, and Jilin University, China

 
NANO2DAY project participants Oleksiy Gogotsi and Veronika Zahorodna visited Polymer Institute SAS, Bratislava, Slovakia, July-September 2018

altNANO2DAY project participants from Materials Research Centre, Kiev, Ukraine, MRC director and project leader Oleksiy Gogotsi and ESR Veronika Zahorodna are working in Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia under the project secondments plan.

 
NANO2DAY project: Professor Maria Omastova, Polymenr Institue Slovak Academy of Science, visited Materials Research Centre, Kiev, Ukraine, July-August 2018

Professor Maria Omastova, Polymer Institute SAV, Bratislava, Slovakia, and Oleksiy Gogotsi, director of Materials Research Centre, Kiev, Ukraine,  July 2018Professor Omastova was acquainted with the activities and research infrastructure of MRC project partner, she held several seminars on polymer composites and talked about the experience and developments of her institute. 

 
The 6th International Conference on Novel Functional Carbon Nanomaterials at the 8th Forum on New Materials (CIMTEC 2018) in Perugia, Italy, June 11-14

Фото Yury Gogotsi.The 6th International Conference “Novel Functional Carbon Nanomaterials”within the 8th Forum on New Materials at CIMTEC 2018 held in Perugia, Italy,  highlighted recent achievements and challenges in the synthesis, structural control and modeling at the meso- and nano-scales of the variety of low-dimensional carbon allotropes including nanodiamonds, diamond-like carbon, fullerenes, nanotubes, graphene and graphene-related structures, as well as high surface area carbon networks, which are promising for a range of emerging applications in energy conversion and storage, water purification, high-speed nanoelectronics, optoelectronics, photonics, quantum information processing, quantum computing, biosensing, drug delivery, medical imaging, thermal management, catalysis, lubrication, etc.

 
1st International Conference on MXenes at Jilin University, Changchun, China

MXene conference 2018The meeting is the first international conference focusing on MXene materals, which is to bring scientists in the two-dimensional materials or energy area to interact and discuss the advances and challenges in various fields.

 
Our Congratulations to Prof. Gogotsi with Receiving an Honorary Doctorate from Kyiv Polytechnic Institute KPIthe National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute"

 Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic InstituteOn May 14th, 2018, Prof. Yury Gogotsi received an honorary doctorate from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute (NTUU “KPI”), Kiev, Ukraine.

 
H2020-MSCA-RISE Nano2Day Kick-off project meeting, Academic Centre of University of Latvia, Riga, 10-11 May 2018

altH2020-MSCA-RISE project „Multifunctional polymer composites doped with novel 2D nanoparticles for advanced applications NANO2DAY” started on May 1, 2018. It is aimed to develop novel multifunctional composites with outstanding electronic and mechanical properties by incorporation of novel MXene nanosheets into polymer matrixes.

 
Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine" as part of the NAU Info Day

horizon2020 семінарOn February 14, 2018, Materials Research Center team visited the Training " on "How to write a successful proposal in Horizon 2020" at National Aviation University of Ukraine"  as part of the NAU Info Day.

 
Paper on Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological propertiesProcessing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties.

 
Professor Yury Gogotsi will give a lecture on 2D materials MXenes in Stanford University

altProfessor Yury Gogotsi will give a lecture on 2D materials MXenes on MSE winter Colloquim in Materials Science and Engineering Department, Stanford University. 

 
MXene is one of the most sensitive gas sensors ever reported

MXene gas sensorsMXene is one of the most sensitive gas sensors ever reported that sniff out chemicals in the air to warn us about everything from fires to carbon monoxide to drunk drivers to explosive devices hidden in luggage have improved so much that they can even detect diseases on a person’s breath. Researchers from Drexel University and the Korea Advanced Institute of Science and Technology have made a discovery that could make our best “chemical noses” even more sensitive.