![]() |
Результаты последнего исследования группы были опубликованы в специальном выпуске журнала Advanced Energy Materials ("Электрохимические потоковые конденсаторы: Новая концепция для быстрого накопления и возобновления энергии *"). Основное внимание статья фокусирует на аккумуляторах нового поколения.
Электрохимический потоковый конденсатор использует структуру проточных ячеек, что напоминает существующие возобновляемые жидкостные кислотные батареи, состоящие из электрохимической ячейки, связанной с внешними резервуарами электролита. Тем не менее, эта технология является уникальной в том, что она использует текучую суспензию, наполненную частицами, растворенными в жидком электролите. Незаряженная суспензия прокачивается через проточную ячейку, где энергия сохраняется внутри твердых частиц. Пока энергия необходима, заряженная суспензия может подаваться в резервуары, затем весь процесс происходит в обратном направлении. Используя эту емкостную суспензию вместо обычного электролита батарей, команда Дрекселя заявляет, что их новая разработка может функционировать с высокой мощностью при сотнях тысяч циклов заряд-разряд, что имеет очень важное значение для промышленного применения.

По словам одного из ведущих ученых проекта, директора Института Нанотехнологий Университета Дрекселя профессора Юрия Гогоци, тот факт, что обычные суперконденсаторы обеспечивают очень высокую выходную мощность при минимальном уменьшении производительности, является общеизвестным, но при этом они всегда имели довольно ограниченные возможности хранения энергии. Включив активный материал суперконденсаторов в жидкость, исследователи нашли способ решать вопросы емкости и размерности, используя структуру жидких кислотных возобновляемых батарей. В системах жидкостных батарей, также как и в проточных электрохимических конденсаторах, энергоемкость определяется размерами резервуаров для хранения заряженного материала. Если нужна большая емкость - корпус резервуара может быть просто расширен в размерах. Кроме того, выходная мощность системы контролируется размерами электрохимической ячейки - большие ячейки производят больше энергии.
На данном этапе работа команды из Дрекселя сосредоточена на разработке новых композиций состава суспензии на основе различных углеродных наноматериалов и электролитов, а также оптимизации дизайна потоковых электрохимических конденсаторов.
Ученые обнаружили перспективную технологию, которая на сегодняшний день имеет наибольшую производительность, из всех известных ранее, но это вовсе не означает, что ее возможности ограничиваются только данными показателями. Команда разрабатывает экспериментальное устройство , чтобы проиллюстрировать основные функции и возможности новой технологии. Центр Материаловедения также принимает участие в данных работах, а именно в разработке дизайна ячейки и изготовлении опытного образца электрохимического потокового конденсатора.
*The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery
The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery Volker Presser, Christopher R. Dennison, Jonathan Campos, Kevin W. Knehr, Emin C. Kumbur,Yury Gogotsi
Источник: Drexel University
Похожие материалы по участии Центра материаловедения в разработке проточных суперконденсаторов:
Рабочее совещание в Университете Дрекселя, США, по электрохимическим потоковым конденсаторам
| < Предыдущая | Следующая > |
|---|




Дякуємо всім друзям, партнерам, волонтерам за допомогу та вашу невтомну роботу! Продовжуємо допомагати нашим захисникам та доправляємо військове спорядження, гуманітарну допомогу, польову медицину та спеціальні медицині засоби до військових підрозділів, територіальної оборони, лікарень на передовій!
Якщо є люди, фонди та волонтери, які хочуть відправити допомогу в Україну з країн Європи або США, ми готові приймати на наші склади, складати збірні чи окремі партії та під замовлення і прицільно передавати їх далі кому вона необхідна. На всю гуманітарну допомогу буде надано звітність про передачу, фото.


Говорят, что большие вещи приходят в маленьких посылках. И в течение последнего десятилетия MXenes - двумерные соединения углерода и переходных металлов, впервые разработанные в Дрекселе - подтверждали эту точку зрения, стимулируя инновации во многих областях науки. Теперь новое партнерство открывает возможности для помощи MXenes в спасении жизней.
Совместно с этой лекцией профессор Юрий Гогоци получит звание почетного доктора Сумского государственного университета.Это уникальная возможность приобщиться к науке мирового уровня, окунуться в мир наноматериалов и проследить научный путь нашего соотечественника. Лекция пройдет в 16:00, 27 мая 2021 года в Конгресс-Центре СумГУ, зал Сингапур 220, в г. Сумы.
Материал MXene, который был впервые получен учеными из Университета Дрекселя в 2011 году, - это еще один шаг к тому, чтобы изменить жизнь людей, страдающих болезней почек на 
Участник проекта CANBIOSE из Центра материаловедения (MRC), выполнил визит в партнерскую организацию Вильнюсский университет, для выполнения программы совместных исследований и тренингов.
Всемирно известный ученый-украинец профессор Юрий Георгиевич Гогоци рассказал о последних новинках нанотехнологий. Возможность для общения с ученым мирового уровня - редкость, но воспитанникам Малой Академии Наук Украины (МАН) везет. Именно такую возможность они недавно получили.
Инженер-исследователь из MRC Иван Гришко находится в Латвийском университете, где провел семинар по MXenes
Совместно с польскими коллегами они
Совместно с коллегами из КТУ они занимались симуляциями и моделированием механических свойств наноматериалов и нанокомпозитов.
В январе 2019 года профессор Юрий Гогоци был избран членом Европейской академии наук (EURASC). Профессор Юрий Гогоци - ведущий украинский и американский ученый в области химии, с 2000 года профессор Университета Дрекселя, Филадельфия, США, в области материаловедения, инженерии и нанотехнологий.