Разаботка, исследование и производство материалов для суперконденсаторов - электрохимических конденсаторов с двойным слоем, псевдоконденсаторов и гибридных конденсаторов

Центр Материаловедения занимается исследованиями, разработкой и производством материалов для суперконденсаторов.

Мы производим широкий спектр углеродных наноматериалов с регулируемой пористостью - производим мезопористый, макропористый, микропористый и нанопористый углеродный материал. Наши специалисты помогут подобрать вам материал для суперконденсаторов с необходимыми параметрами и свойствами.
Суперконденсаторы (или электрохимические конденсаторы) хранят энергию способом адсорбции ионов (благодаря электрохимическому двойному слою) или благодаря быстрой окислительно-восстановительной реакции на поверхности (псевдоконденсаторы). Суперконденсаторы могут быть дополнительным элементом или полностью заменять аккумуляторы в устройстве накопления электрической энергии, в случае, когда не требуется мощная подача и поглощение энергии. В последнее время произошел заметный рост производительности благодаря достижениям в понимании непосредственно механизмов и процессов хранения заряда, а также благодаря развитию новейших наноструктурных материалов, а именно различных углеродных наноматериалов.

Изменения климата и ограниченность ископаемых топливных ресурсов приводят общество к необходимости перехода на устойчивые возобновляемые источники энергии.  Как результат, мы наблюдаем увеличение производства возобновляемой энергии солнца и ветра, а также развитие электрических транспортных средств или гибридных электромобилей с низким уровнем выбросов CO2. Но солнце не светит ночью, а погода не всегда ветрена, и устройства хранения энергии начинают играть более значительную роль в нашей жизни.
В авангарде это электрические системы аккумулирования энергии, такие как аккумуляторные батареи и электрохимические конденсаторы (ECS), но они требуют значительного усовершенствования для удовлетворения возрастающих энергетических потребностей будущих устройств - от портативной электроники и гибридных автомобилей до большого промышленного оборудования- путем разработки новых материалов и продвижения на пути к пониманию электрохимических интерфейсов на наноуровне.
Литий-ионные батареи, хотя и имеют высокую стоимость и медленную подачу энергии, но и до сегодня остаются самыми мощными аккумуляторами ввиду большой плотности энергии. Но суперконденсаторы активно совершенствуются и в отличие от литий-ионных батарей, имеют большое преимущество – они обеспечивают мгновенную подачу энергии и большое количество циклов заряд-разряд.
Они играют важную роль в дополнении или замене батарей в области хранения энергии, например, в качестве источников бесперебойного питания (резервные запасы, используемые для защиты от сбоев питания) и выравнивания напряжения.
Можно выделить несколько типов электрохимических конденсаторов в зависимости от механизма накопления энергии и используемого в суперконденсаторе активного материала - электрохимические конденсаторы с двойным слоем, псевдоконденсаторы и гибридные конденсаторы.

Основным рынком сбыта электрохимических конденсаторов с двойным слоем считается транспортная отрасль, включая гибридный электроприводный транспорт, а также поезда метрополитена, трамваи. Но до сих пор в этой отрасли существуют разные мнения по поводу использования высокомощных литий-ионных батарей вместо электрохимических конденсаторов (и наоборот). Но не следует рассматривать литий-ионные батареи и электрохимические конденсаторы как конкурентные, поскольку они имеют разные характеристики и механизмы хранения энергии. Доступность и подача накопленного заряда всегда будет более быстрой для суперконденсаторов (благодаря большой поверхности для хранения энергии), чем для литий-ионных аккумуляторов (хранение в обьеме), хотя у последних -  больше запас хранимой энергии.

Уменьшение цены на углеродные материалы для электрохимических конденсаторов, включая CDC и активированные углероды, может обеспечить их широкое производство и использование.  Разработка и производство таких материалов для суперконденсаторов как нанопористый углерод с размером пор для захвата ионов электролита с точностью до ангстрем, углеродные нанотрубки для гибких и печатных устройств с коротким временем оклика, а также наночастицы оксидов переходных металлов и нитридов для псевдоконденсаторов являются последними достижениями в данной области суперконденсаторов.

Электрохимические конденсаторы с двойным слоем

Электрохимические конденсаторы с двойным электрическим слоемВ электрохимических конденсаторах с двойным электрическим слоем используется активный материал на основе углерода с высокой площадью поверхности. Электроды выполняют, как правило, путём использования пористых материалов, таких, как активированный уголь или вспененные металлы. Общая площадь поверхности, даже в тонком слое такого материала, во много раз больше, чем в традиционных материалах, таких как алюминий, что позволило хранить заряд в любом объёме. Для этого применения графитовый углерод соответствует всем требованиям -  он обладает высокой проводимостью, электрохимической стабильностью и открытой пористостью. Также в качестве активного материала для электрохимических конденсаторов с двойным электрическим слоем могут применяться активированный углерод, углерод, получаемый из карбидов (CDC), углеродные ткани, углеродные волокна, углеродные нанотрубки, углеродные нанолуковицы, нанорожки. Но наиболее распространен активированный углерод ввиду своей большой площади поверхности и невысокой стоимости.Активированные угли получают из богатых углеродом органических прекурсоров путем карбонизации (термообработки) в инертной атмосфере с последующим селективным окислением в CO2, водяным паром воды или раствором КОН, чтобы увеличить площадь поверхности и объем пор. В качестве прекурсоров обычно используются натуральные материалы, такие как скорлупа кокосовых орехов, дерево, смолы, угли, или синтетические материалы, такие как полимеры.  Пористая сеть в углеродном материале производится после активации; в зернах углерода могут быть созданы микропоры (<2 нм), мезопоры (2-50 нм) и макропоры (> 50 нм).
Углеродные структуры, используемые в качестве активных материалов для двухслойных конденсаторов.Углеродные материалы, используемые в конденсаторах с двойным электрическим слоем обычно предварительно обрабатываются для удаления влаги и большой части функциональных групп, присутствующих на поверхности углерода для повышения стабильности при циклировании, поскольку они могут вызвать увядание емкости и старение конденсатора. Высокая емкость наблюдалась у мезопористого углеродного материала содержащего маленькие микропоры.
Однако наиболее убедительные результаты увеличения емкости в порах размером меньше, чем ион, были получены во время экспериментов, когда в качестве активного материала использовались углероды, полученные из карбидов (CDCs). Это пористый углеродный материал, полученный путем экстракции металлов из карбидов (TiC, SiC и др.) путем травления в галогенов при повышенных температурах. TiC + 2Cl2 → TiCl4 + C
В этой реакции, Ti выщелачивают из TiC, а атомы углерода самообразуют аморфную или неупорядоченную структуру с размером пор, которые могут быть доработаны путем регулирования температуры хлорирования и других параметров процесса.

Поскольку образцы CDC были исключительно  микропористые, то увеличение емкости за счет субнанометрических пор четко показыавает роль микропор. Кроме того, гравиметрические и объемные емкости, достигнутые при использовании CDC составили соответственно показатель на 50% и 80% выше, чем у обычного активированного углерода. Данные материалы демонстрируют высокий энергетический потенциал для дальнейшего применения в суперконденсаторах.

Псевдоемкостные конденсаторы

В основе некоторых электрохимических конденсаторов лежит механизм быстрых обратимых окислительно-восстановительных реакций, которые происходят на поверхности активного материала – так называемые псевдоемкостные реакции. Они имеют высокую удельную емкость. Для псевдоконденсаторов в качестве активного материала используются оксиды переходных металлов (RuO2, Fe3O4, MnO2 или Mo20), а также испытывались электропроводящие полимеры – полианилин, полипиррол, политиофен и их производные. Недостатком проводящих полимеров при использовании в качестве активного материала, является ограниченная стабильности во время циклирования, что снижает начальную производительность. Исследования проводящих полимеров для суперконденсаторов в настоящее время направлены на их применение в гибридных системах.
Учитывая, что наноматериалы помогли улучшить литий-ионные батареи, то не удивительно, что наноструктуры имели такое же влияние на электрохимические конденсаторы ECS, поскольку псевдоконденсаторы хранят заряд в первых нескольких нанометров поверхности, тем самым уменьшая размер частиц используемого активного материала. Синтезированные тонкие слои MnO2 и RuO2 в нанометровом мастабе были нанесены на различные подложки – металлические коллекторы, углеродные нанотрубки или активированный углерод.
Возможные способы улучшения удельной мощности и плотности энергии для электрохимических конденсаторов. a, b, зернистый активированный углерод, покрытый слоем псевдоемкостных материалов; c и d - полученные отложения псевдоемкостных материалов (с) на хорошо упорядоченной большой площади углеродных нанотрубок(d)Синтез тонких пленок или емкостных материалов с большой площадью поверхности, покрытых наноразмерным псевдоемкостным активным веществом (как в примерах представленных на рисуске выше) позволяет увеличить удельную плотность энергии и конкурировать с электрохимическими конденсаторами с двойным слоем на основе углерода EDLC. Но, к сожалению, на данном этапе высокая стоимость производства таких сложных наноструктурных материалов пока ограничивает их широкое применение в компактных электронных устройствах.

Гибридные суперконденсаторы

Гибридные конденсаторы объединяют емкостный или псевдо-емкостный электрод с электродом аккумуляторной батареи, и таким образом сочетают свойства и конденсатора, и  батареи.
Гибридные системы могут выступить заманчивой альтернативой традиционным псевдоконденсаторам (pseudocapacitors) или электрохимическим конденсаторам двойного слоя (EDLCs) путем объединения в одной ячейке электрода как источника энергии и электрода – источника питания.
Соответствующая комбинация электродов может даже увеличить напряжение элемента, тем самым увеличив удельную мощность и плотность энергии. В настоящее время существует два разных подхода к гибридным системам: (I) комбинация псевдо-емкостных оксидов металлов с емкостным углеродным электродом, и (II)сочетание электрода из вставок лития с емкостным углеродным электродом. Эти системы могут представлять особый интерес в приложениях, где требуется высокая мощность и средняя длительность жизненного цикла.

Токоприемники

 Поскольку электрохимические конденсаторы явлются силовыми устройствами, их внутреннее сопротивление должно соблюдаться на низком уровне. Следует обратить особое внимание на контактный импеданс (сопротивление) между активной пленкой и токоприемником. В электрохимических конденсаторах, разработанных для органических электролитов используется обработанная алюминиевая фольга или сетевые токоприемники. Привлекательным материалом для токоприемников является углерод в виде  высокопроводящих нанотрубок или листы графена. Эти материалы не поддаются коррозии в водных электролитах и являются очень гибкими.

В статье использованы материалы и иллюстрации из статьи Materials for electrochemical capacitors,P Simon, Y Gogotsi, Nature materials 7 (11), 2008, р.845-854

 

НОВОСТИ НАУКИ И НАНОТЕХНОЛОГИИ

Поздравляем профессора Юрия Гогоци с вручением Ордена Дружбы от Китайского правительства, 29 сентября 2018

altНаграду профессору Юрию Гогоци вручал Вице-премьер министр Китая Лю Хе. Орден Дружбы - высшая государственная награда Китайской Народной Республики для иностранных граждан. Орден Дружбы - самая высокая награда Китая для иностранных экспертов, которые внесли выдающийся вклад в экономическое и социальное развитие страны.

 
15-я Ежегодная встреча Ялтинской Европейской Стратегии (YES) «Будущее поколение всего» состоялась в Киеве 13-15 сентября 2018

alt15-я Ежегодная встреча Ялтинской Европейской Стратегии (YES) «Будущее поколение всего» состоялась в Киеве 13-15 сентября 2018. В этой конференции, организованной международным форумом YES приняли участие ведущие политики, дипломаты, бизнесмены, общественные деятели и эксперты из 28 стран.

 
Поздравляем профессора Юрия Гогоци, который по версии Clarivate Analytics стал одним из самых влиятельных ученых в области физики в 2018 году!

Professor Yury GogotsiУченый украинского происхождения Юрий Гогоци, заслуженный профессор Университета Дрекселя, (Филадельфия, США) был назван известным рейтинговым агенством Clarivate Analytics одним из самых влиятельных ученых мирового класса по количеству цитирований его публикаций.

 
NAP 2018: Восьмая Международная конференция "Наноматериалы: применение и свойства", Затока, Украина, 9-14 сентября 2018,

2018 IEEE International Conference on “Nanomaterials Applications & Properties”

С 9 по 14 сентября на берегу Черного моря в пгт Затока (Одесская область) прошла уже традиционная 8-я Международная конференция «Наноматериалы: применение и свойства» (2018 IEEE International Conference on Nanomaterials: Applications & Properties) 

 
Участники проекта NANO2DAY из Materials Research Centre (MRC), Киев, Украина, в рамках международного научного сотрудничества посетили партнерскую организацию Институт Полимеров Словацкой Академии Наук, Братислава, Словакия, июль-сентябрь 2018

alt

Участники проекта NANO2DAY из Materials Research Centre (MRC), Киев, Украина, директор и руководитель проекта от MRC Алексей Гогоци и  Вероника Загородная в рамках международного научного сотрудничества посетили партнерскую организацию Институт Полимеров Словацкой Академии Наук, Братислава, Словакия, в соответствии с планом коммандировок по проекту.

Участники проекта от MRC работают в тесном сотрудничестве с исследователями из Института Полимеров, делятся своим опытом в синтезе двумерных наноматериалов (MXene), знакомятся и изучают последние разработки коллег  по полимерам и композиционным материалам.

 
Рабочая поездка по проекту NANO2DAY проф. Марии Омастовой в Центр Материаловедения, Киев, Украина, июль-август 2018

PrПрофессор Мария Омастова, Институт Полимеров Словацкой Академии Наук, Братислава, и директор Центра Материаловедения Алексей Гогоци, июль-август 2018Профессор Мария Омастова из Института полимеров Словацкой академии наук, Братислава, Словакия, посетила  Materials Research Centre, Киев, Украина, на протяжении июля-августа 2018 года по программе Горизонт-2020 в рамках проекта MSCA RISE NANO2DAY.

 
Первая международная конференция по максенам MXenes, Цзилиньский Университет, Чанчунь, Китай, 24-26 мая 2018

MXene conference 2018Встреча является первой международной конференцией, посвященной двумерным материалам максинам MXene, которая должна помочь ученым в изучении двумерных материалов и энергии взаимодействовать, а также обсуждать достижения и проблемы в различных областях.

 
6-я Международная конференция «Новые функциональные углеродные наноматериалы» на Восьмом форуме по новым материалам (CIMTEC 2018) в Перудже, Италия, 11-14 июня 2018

Фото Yury Gogotsi.6-я Международная конференция «Новые функциональные углеродные наноматериалы» в рамках 8-го Форума по новым материалам на CIMTEC 2018, проведенного в Перудже, Италия, посвящена недавним достижениям и задачам в области синтеза, структурного контроля и моделирования на мезо- и наномасштабах разнообразия малоразмерных аллотропов углерода, включая наноалмазы, алмазоподобный углерод, фуллерены, нанотрубки, графен и графеновые структуры, а также углеродные сети с высокой площадью поверхности, которые являются перспективными для ряда новых применений в области преобразования и хранения энергии, очистки воды, высокоскоростной наноэлектроники, оптоэлектроники, фотоники, квантовой обработки данных, квантовых вычислений, биоизмерения, доставки лекарств, медицинской визуализация, теплового управления, катализа, смазок и т. д.

 
Вручение диплома Почетного доктора КПИ им. Игоря Сикорского профессору Юрию Георгиевичу Гогоци

Юрию Гогоци было присвоено звание Почетного доктора КПИ, 14  мая 2018 г.Поздравляем профессора Юрия Гогоци с получением звания Почетного доктора Национального технического университета Украины" Киевский политехнический институт имени Игоря Сикорского ,14 мая 2018!

 
H2020-MSCA-RISE проект NANO2DAY, встреча участников проекта в Латвийском университете, 10-11 мая 2018 г.

altПроект H2020-MSCA-RISE NANO2DAY «Многофункциональные полимерные композиты, допированные новыми двумерными наночастицами для продвинутых применений», начался 1 мая 2018 года ипродлится 4 года. Он направлен на разработку новых многофункциональных композитов с выдающимися электронными и механическими свойствами за счет включения новых нанолистов MXene в полимерные матрицы. 

 
«Нанобиофизика: фундаментальные и прикладные аспекты», специальная сессия посвященная европейскому проекту assymcurv в рамках программы Horizon 2020

ilt logoC 2 по 5 октября 2017 в Физико-техническом институте низких температур (ФТИНТ) имени Б.И. Веркина НАН Украины прошла пятая Международная конференция «Нанобиофизика: фундаментальные и прикладные аспекты», организаторами которой выступили ФТИНТ имени Б.И. Веркина НАН Украины и Институт физики НАН Украины.

 
Рецепт безопасных батарей - добавка из наноалмаза

Исследователи из Дрекселя сообщили, что добавление наноалмазов к раствору электролита в литиевых батареях может предотвратить образование дендритов, тензор-подобных отложений ионов, которые со временем могут расти внутри батареи и вызывать опасные сбои. (Фото предоставлено Университетом Дрекселя и Университетом Цинхуа).С целью предотвратить опасные неисправности лептопов исследователи из Университета Дрекселя разработали рецепт, который может превратить раствор электролита - ключевой компонент большинства батарей - в защиту от химического процесса, который приводит к поломкам, связанным с батареями.

 
Рабочая поездка в Цзилиньский университет и международное сотрудничество

Visit to Jilin University, Changchun, ChinaАлексей Гогоци, директор Materials Research Centre с рабочей поездкой посетил Цзилиньский Университетв Чанчуне, Китай. Он провел рабочую встречу с профессором Юрием Гогоци , заслуженным профессором Университета Дрекселя, США. и Цзилиьского университета, а также профессором Хан Вей , исполнительным заместителем директора международного сотруднического Центра Талантов в Международном центре наук будущегою Они обсудили текущие совместные исследовательские работы по современным материалам для суперконденсаторов и других применений.

 
20 июня 2017 года по решению академического совета директору Института Наноматериалов им. А. Дж. Дрекселя, профессору Юрию Гогоци было присвоено звание Почетного доктора Института проблем материаловедения им. Францевича Национальной академии наук Украины

На фото слева направо: замдиректора Рагуля А.В., Баглюк Г. А., Заворотный М.Г., профессор Юрий Гогоци, ученый секретарь Картузов В.В. и академик Фирстов С.А. 20 июня 2017 года по решению академического совета директору Института Наноматериалов им. А. Дж. Дрекселя, профессору Юрию Гогоци было присвоено звание Почетного доктора Института проблем материаловедения им. Францевича Национальной академии наук Украины..

 
Команда Materials Research Centre 14 февраля 2018 на базе Национального авиационного университета посетила Информационный тренинг «Как написать успешный пропосал для программы Горизонт 2020»

horizon2020 семінарКоманда Materials Research Centre 14 февраля 2018 на базе Национального авиационного университета посетила Информационный тренинг «Как написать успешный пропосал  для программы Горизонт 2020» в рамках информационного дня НАУ.

 
Юрий Гогоци. Профессор наноматериалов и научный Эверест. Интервью для "Українська Правда. Життя"

altСейчас значительная часть жизни ученого Юрия Гогоци - это международные полеты из США по всему миру, лекции, открытие лабораторий, редактирование научного журнала ACS Nano (18-того в рейтинге Google Scolar среди тысяч). И как минимум две статьи каждый год для самых влиятельных научных журналов мира Nature и Science.

 
Юрий Гогоци – самый влиятельный ученый современной Украины - Канал 24

alt

Жизнь Юрия Гогоци – это постоянные перелеты между топовыми лабораториями мира, написание статей в лучших научных журналов мира и исследования материалов, которые могут изменить мир вокруг. Ученый из Киева ежегодно получает более миллиона долларов на лабораторные эксперименты, правда, только за границей. Прочитать лекции в Украине его приглашают крайне редко.

 
Интервью профессора Юрия Гогоци для Hromadske о науке, финансировании и перспективах

профессор Университета Дрекселя Юрий Гогоци Фото: Александр Попенко/ГромадськеЕго труды цитируют чаще, чем многих нобелевских лауреатов, он получает на исследования 2,2 миллиона долларов от родного университета, однако в Украине о Юрия Гогоци знают немногие: лишь несколько публикаций о нем в сети и 2-3 приглашение на выступления в год.

 
Лекция профессора Юрия Гогоци в НТУУ КПИ, 8 июня 13:00

Профессор Юрий  Гогоци, Университет Дрекселя, США

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского»
Инженерно-физический факультет
Корпус №9, ауд. 101
Дата и время проведения: 8 июня в 13:00
Вход свободный

 
Научная лекция профессора Юрия Гогоци Открытие новых материалов и технологии будущего в ИПМ НАНУ, 7 июня 12:00

Профессор Юрий Гогоци

 Институт проблем материаловедения им.Францевича НАНУ

Главный корпус, Актовый зал (к. 208)

Дата и время проведения: 7 июня в 12:00

Вход свободный