Влияние окисления на прочность реакционно спеченной керамики на основе нитрида кремния

 

Порошковая Металлургия, No. 5(281), с. 40-44, 1986

УДК 666.76.01+621.48

Ю.Гогоци, А.Гогоци, О.Щербина

Читать в формате pdf

ВЛИЯНИЕ ОКИСЛЕНИЯ НА ПРОЧНОСТЬ РЕАКЦИОННОСПЕЧЕННОИ КЕРАМИКИ НА ОСНОВЕ НИТРИДА КРЕМНИЯ

Порошковые материалы, изделия и покрытия

Керамика на основе нитрида кремния перспективна для изготовления деталей различных высокотемпературных устройств [1]. Ннтридокремниевые материалы могут сохранять высокую прочность до температуры 1200—1400 °С. Причем, как было показано ранее [2], их прочность определяется состоянием вторичной межзеренной фазы: чем выше температура ее размягчения, тем больше допустимая для данного материала рабочая температура. Температура размягчения межзеренной фазы зависит в основном от вида введенной в материал добавки (MgO или другой) и содержания примесей (Са, Fe, AI).
Очистка исходного сырья от примесей увеличивает высокотемпературную прочность реакционно связанного Si3N4 на 15% [3]. Отрицательное влияние примесей в данном случае связано с тем, что они понижают температуру ликвидуса межзеренной фазы и препятствуют ее кристаллизации. При окислении в процессе эксплуатации в результате диффузии кислорода по порам и границам зерен в глубь материала в приповерхностных слоях образуется жидкая силикатная фаза с температурой плавления около 1100 "С [4]. В то же время минимальная температура плавления чистой системы MgO—S1O2 составляет 1540°С. В процессе окисления наряду с проникновением кислорода вглубь происходит диффузия примесей к поверхности.
Таким образом, при окислении нитридокремниевых материалов примеси перераспределяются по объему и концентрируются в тонкой поверхностной пленке. Авторы [6] считают, что таким путем можно очистить основную массу материала от примесей и добиться повышения его прочности при высоких температурах. При этом рекомендуется удалять насыщенный примесями и содержащий много дефектов поверхностный оксидный слой. Окисление горячепрессованного нитрида кремния в течение 300 ч при 1400 °С повышает прочность при этой температуре более чем на 50 % [6[. При этом критический коэффициент интенсивности напряжений К\с уже после 5 ч окисления, а затем удаления оксидного слоя повышается на 50 % [6].
В связи с тем что детали сложной формы изготавливают в основном методом реакционного спекания, а не горячим прессованием, большой практический интерес представляет применение описанного способа повышения прочности и трещиностойкости к реакционно спеченным материалам. Известно, однако, что свойства горячепрессованных и реакционноспеченных материалов сильно отличаются [4], поэтому окисление может оказывать на них различное влияние.
В настоящей работе исследовано влияние окисления с последу­ющим удалением оксидного слоя на прочность реакционно спеченного материала типа НКККМ-83 системы Si3N4—SiC (70:30), содержащего 2 % MgO в качестве активирующей спекание добавки, при темпера­турах 20 и 1400 °С. Исходным сырьем служил порошок кремния марки КПС-3, в котором при помощи спектрального анализа были обнаружены примеси Ti, Си, Al, Ni, Мп в количествах от 0,1 до 0,01 %. Йа-мол железа составлял около 0,6 %. Механизм и кинетика окисления материалов типа НКККМ описаны в работе [5], их механические свой­ства — в работе [7].
Образцы для испытаний вырезали из заготовок размером 5.5Х5.5Х Х55 мм. Часть из них подвергали предварительному окислению при 1400°С в течение 5 ч (таблица). При выборе времени окисления руководствовались следующими соображениями. Реакционно спеченные материалы обладают меньшей стойкостью к окислению, чем горячепрессованные. Выдержка материалов в окислительной среде более 5 ч не приводит к дальнейшему изменению их прочности [8]. На поверхности таких


Шлиф среза образца и диаграмма зависимости приращения массы

Рис. 1. Зависимости приращения массы на единицу плошали геометрической по­верхности образцов групп I (/) н 2 (2) от времени окисления.
Рис. 2. Шлиф среза образца группы 3. Х16.

образцов[5] при 1400 °С защитный слой формируется в первый час окисления, и скорость процесса после этого резко замедляется. Уже после 5 ч выдержки горячепрессоваиного Si3N4 при 1400 °С ве­личина К\с увеличивается в полтора раза.
Испытания проводили методом трехточечного изгиба на установке МИК-9 [8]. Предел прочности рассчитывали без учета нелинейности диаграмм деформирования по известной формуле сопротивления материалов: 0у.н= (ЗР • а) / (Ь • li2), где Р — разрушающая нагрузка; а — дли­на консольной части образца (10 мм). Ширина Ь, высота h образцов, подвергнутых различным видам обработки, немного отличались, однако


настолько, что, как было показано в [9], влиянием масштабного фактора можно пренебречь. Рентгенофазовый анализ материала проводили при помощи дифрактометра ДРОН-2,0 в Си/(а-излучение). Шлифы и из­ломы образцов исследовали на металлографическом микроскопе «Неофот-21».
После 1 ч нагрева процесс окисления стабилизируется и его ско­рость замедляется (рис. 1). В результате окисления по указанному режиму на поверхности образцов образуется блестящая оксидная плен­ка толщиной примерно 10 мкм. При этом также значительно видоизме­няется состав и структура материала на глубину до 1 мм (рис. 2). В связи с этим механическую обработку окисленных заготовок проводили с таким расчетом, чтобы наиболее полно удалить поверхностный слой и исключить его влияние на результаты испытаний. Рентгенофазовым анализом в составе обработанных образцов не обнаружено ни­каких кристаллических оксидных фаз. В состав поверхностного окис­ленного слоя входили диоксид кремния в виде а-кристобалита и стеклофазы, силикаты сложного состава типа диопсида (Са, MgJSiCu и аугита (Са, Mg, Fe)SiCb, силикаты магния — энстатит MgSi03 и форс­терит MgSi04. Содержание кристаллических соединений магния, железа н кальция (5—10 % по массе) превышало нижний предел чувствительности дифрактометра. Следовательно, примеси, обладающие высоким сродством к кислороду, концентрируются в топкой пленке на поверхности образца. Добиться кристаллизации примесных фаз в оксидном слое удалось медленным охлаждением образцов вместе с печью. При быстром охлаждении они входят в состав стекло-фазы [5|.
С увеличением температуры испытаний от 20 до 1400 °С предел прочности образцов уменьшается более чем вдвое (таблица). Причем наибольшую прочность при 1400 °С имеют образцы, не подвергавшиеся предварительному окислению. Об отрицательном влиянии окисления при 1400 °С на прочность реакционноспеченных нитридокромниевых материалов сообщалось и ранее [8]. На основании полученных нами ранее результатов [5, 8, 10] и данных работ [6, 11] можно сформулировать причины изменения прочности материалов после окисления:
Залечивание пор, трещин и других дефектов в поверхностных и во внутренних слоях образцов (это, по-видимому, основная причина по­вышения прочности образцов после окисления; примерно такого же ее увеличения можно достичь путем шлифовки поверхности [81);
растрескивание поверхностного слоя, вызванное фазовым превра­щением в кристобалите, которое сопровождается изменением объема па 5 % [12] (это часто обусловливает понижение прочности в условиях комнатной температуры после окисления при 1100°С и выше; следует также учитывать, что уровень падения прочности определяется глуби­ной возникающих трещин, которая, в свою очередь, зависит от толщины оксидной пленки);
возникновение в поверхностном слое сжимающих напряжений из-за разницы температурных коэффициентов линейного расширения материала и оксидного слоя и вследствие увеличения объема в процессе превращения Si3N4 и SiC в SiOo (все это может повышать прочность [8], однако при слишком больших напряжениях происходит растрескивание оксидного слоя и деградация прочностных свойств);
возникновение напряжений при нагреве из-за различия температурных коэффициентов линейного расширения соединений Si3N4, SiC и межзеренной вторичной фазы, наблюдающееся при температурах 600— 900 °С и несколько снижающее прочность материала [11];
травление границ зерен и образование по ним в поверхностном слое жидкой фазы [13] (это одна из причин понижения высокотемпературной прочности после окисления при температурах выше 1100°С, когда па поверхности материала образуется жидкая оксидная фаза).


Более низкая прочность при 1400°С предварительно окисленных образцов, по-видимому, вызвана влиянием последнего из перечисленных факторов. Отметим, что образцы групп 2 и 4 (таблица) имели на 15—20 % более высокую прочность, чем образцы группы 3. Это связано с тем, что благодаря предварительному окислению и удалению оксидного слоя они содержали меньше примесей и образующейся при их окислении жидкой фазы, которая к тому же имела большую вяз­кость. Уменьшение содержания примесей в этих образцах подтвержда­ется данными рентгенофазового анализа. В то же время добиться увеличения прочности, как у горячепрессоваппых материалов [6], не удалось. Это связано с окислением пористых образцов не только на поверхности, но и по всему сечению, вследствие чего жидкая оксидная фаза может образовываться во внутренних слоях. Следовательно, отрица­тельное влияние окисления на пористые материалы сказывается силь­нее, в то время как положительное влияние очистки от примесей — слабее из-за меньшего времени выдержки. Скорость диффузии примесей к поверхности также снижается: градиент концентрации кислорода по сечению образца уменьшается вследствие образования оксидной фазы на поверхности пор, пронизывающих весь образец. Увеличение времени выдержки, как было показано в [8], не изменяет сколько-нибудь существенно прочности материала.
Окисление при 1400°С, как отмечалось ранее |8], приводит к некоторому понижению прочности при комнатной температуре (таблица). Это связано с отрицательным влиянием сильных внутренних напряже­ний, возникающих в поверхностном слое окисленных образцов, а также с образованием пор, трещин и других дефектов в застывшем оксидном слое. В то же время предел прочности образцов, с поверхности которых был удален оксидный слой, возрос на 20 % по сравнению с исходным материалом. Такое увеличение предела прочности может быть вызвано залечиванием дефектов во внутренних слоях материала. Так как рентгенофазовым анализом обнаружить оксидные фазы в этих образцах не удалось, можно предположить, что окисление приводит к образованию тонкого слоя аморфного диоксида кремния на поверхности открытых пор.
Выводы.

Окисление реакционно спеченного материала на основе нитрида кремния при температуре 1400°С с последующим удалением оксидного слоя позволяет увеличить его прочность при 20 °С на 20 %. В то же время кратковременная прочность при 1400°С после такой обработки снижается по сравнению с неокисленными образцами, хотя и превосходит прочность окисленных, с поверхности которых не был удален оксидный слой.
Увеличение прочности образцов после окисления связано в основ­ном с тем, что дефекты в подповерхностных слоях керамики залечиваются оксидной фазой, а также с очисткой внутренних слоев от примесей. Снижение прочности обычно вызывается формированием на поверхности образцов оксидного слоя с высокой концентрацией дефектов или возникновением значительных внутренних напряжений.

1. Писаренко Г. С. Перспективы использования керамики в машиностроении//Пробл. прочности.— 1984.—№ 12 —С. 3—7.
2. Подобеда Л. Г. Влияние примесей на свойства материалов из нитрида кремния // Порошковая металлургия.— 1979.— № 1.—С. 75—80.
3. Mangels J. Л. The effect of silicon purity on the strength of reaction-bonded Si3N<// J. Mater. Sci.— 1980.— 15, N 8.— P. 2132—2135.
4. Andersson С. A. Ceramic Materials for High-Temperature Turbines//Proc. workshop on cer. for adv. heat engines.—Orlando, 1977.—P. 183—189.
5. Высокотемпературное окисление конструкционной керамики на основе нитрида крем­ния / В. А. Лавренко, Э. А. Пугач, А. Б. Гончарук и др. // Порошковая металлур­гия.— 1984.—№ П.—С. 50—54.
6. Lange F. F., Davis В. Т., MetcalJ A. I. Strengthening of polyphase SisN* material through oxidation//J. Mater. Sci — 1983— 18, N 5 —P. 1497-1505.
7. Гогоци Г. А. Некоторые результаты изучения механических свойств конструкцион­ной керамики применительно к деталям двигателей.— Киев, 1983.— 66 с.— (Пре­принт/Ин-т пробл. прочности АН УССР).
8. Гогоци 10. Г., Сопенко С. И., Трунов Г. В. Влияние окисления на прочность нитрид-кремниевой керамики//Пробл. прочности.— 1985.—№ 1.— С. 69—72.
9. Трощенко В. Т. Применение статистических теории прочности к расчету детален из жаропрочных керамических материалов//Вопр. прочности металлокерам. жаро-нроч. материалов.—1957.—Вып. 4.— С. 16—28.
10. Воздействие солей на прочность и трещнностонкость ннтрндкремнисвой керамики/ Г. А. Гогоци, 10. Г. Гогоци, В. П. Завада, С. И. Сопенко // Пробл. прочности.— 1984.—№ П.—С. 17—21.
11. Ziegler С. Thermal cycling behaviour of reaction-bonded silicon nitride and some microstructural effects"//Proc. Brit. Cer. Soc—1982,—N 32.—P. 213—225.
12. Evans A. C, Davidge R. W. The strength and oxidation of reaction sintered silicon nitride//J. Mater. Sci.— 1970.- 5, N 4.— P. 314—325.
13. Лавренко В. А., Гогоци Ю. Г.. Францевич И. //. Высокотемпературное окисление го-рячепрессовашюго карбида бора//Докл. АН СССР.—1984.—275, № 1.—С. 114— 117.

BibTex

@article {author = {Gogotsi, Alexey and Gogotsi, Yury and Scherbina O},
title = {Effect of oxidation on the strength of silicon nitride base reaction sintered ceramics},
journal = {Poroshkovaya Metallurgiya},
volume = {5},
number = {281},
url = {http://dx.doi.org/10.1111/j.1744-7402.2012.02843.x},
pages = {40-44},
year = {1986},
}

 

Y. G. Gogotsi, A. G. Gogotsi and O. D. Shcherbina. Effect of oxidation on the strength of silicon nitride base reaction sintered ceramics // Kiev Polytechnic Institute. Translated from Poroshkovaya Metallurgiya, No. 5(281), pp. 40-44, May, 1986. Original article submitted April 10, 1985.

BibTex

 

НОВОСТИ НАУКИ И НАНОТЕХНОЛОГИИ

20 июня 2017 года по решению академического совета директору Института Наноматериалов им. А. Дж. Дрекселя, профессору Юрию Гогоци было присвоено звание Почетного доктора Института проблем материаловедения им. Францевича Национальной академии наук Украины

На фото слева направо: замдиректора Рагуля А.В., Баглюк Г. А., Заворотный М.Г., профессор Юрий Гогоци, ученый секретарь Картузов В.В. и академик Фирстов С.А. 20 июня 2017 года по решению академического совета директору Института Наноматериалов им. А. Дж. Дрекселя, профессору Юрию Гогоци было присвоено звание Почетного доктора Института проблем материаловедения им. Францевича Национальной академии наук Украины..

 
Юрий Гогоци. Профессор наноматериалов и научный Эверест. Интервью для "Українська Правда. Життя"

altСейчас значительная часть жизни ученого Юрия Гогоци - это международные полеты из США по всему миру, лекции, открытие лабораторий, редактирование научного журнала ACS Nano (18-того в рейтинге Google Scolar среди тысяч). И как минимум две статьи каждый год для самых влиятельных научных журналов мира Nature и Science.

 
Юрий Гогоци – самый влиятельный ученый современной Украины - Канал 24

alt

Жизнь Юрия Гогоци – это постоянные перелеты между топовыми лабораториями мира, написание статей в лучших научных журналов мира и исследования материалов, которые могут изменить мир вокруг. Ученый из Киева ежегодно получает более миллиона долларов на лабораторные эксперименты, правда, только за границей. Прочитать лекции в Украине его приглашают крайне редко.

 
Интервью профессора Юрия Гогоци для Hromadske о науке, финансировании и перспективах

профессор Университета Дрекселя Юрий Гогоци Фото: Александр Попенко/ГромадськеЕго труды цитируют чаще, чем многих нобелевских лауреатов, он получает на исследования 2,2 миллиона долларов от родного университета, однако в Украине о Юрия Гогоци знают немногие: лишь несколько публикаций о нем в сети и 2-3 приглашение на выступления в год.

 
Лекция профессора Юрия Гогоци в НТУУ КПИ, 8 июня 13:00

Профессор Юрий  Гогоци, Университет Дрекселя, США

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского»
Инженерно-физический факультет
Корпус №9, ауд. 101
Дата и время проведения: 8 июня в 13:00
Вход свободный

 
Научная лекция профессора Юрия Гогоци Открытие новых материалов и технологии будущего в ИПМ НАНУ, 7 июня 12:00

Профессор Юрий Гогоци

 Институт проблем материаловедения им.Францевича НАНУ

Главный корпус, Актовый зал (к. 208)

Дата и время проведения: 7 июня в 12:00

Вход свободный

 
Открытая лекция выдающегося ученого мирового уровня профессора Юрия Гогоци «Зарядиться на два миллиона» о последних достижениях в области наноматериалов и хранениия энергии, 7 июня, 19:00, Киев, фотостудия Lightfield Productions

профессор Юрий Гогоци, Университет Дрекселя Ученый расскажет, как сочетаются инновации и фундаментальные исследования, сколько будут работать традиционные батарейки и аккумуляторы в будущем и какими будут источники света.

 
Нанотехнологии и энергия будущего: профессор Юрий Гогоци о нанотехнологиях в области хранения энергии на Всемирной научной ярмарке 2017 года World Science Fair 2017

Professor Yury Gogotsi at World Science Festival 2017Среди экспертов в студии World Science Fair 2017 выдающийся ученый из Университета Дрекселя профессор Юрий Гогоци, лауреат премии имени Фреда Кавли. 

 
Семинары Виктора Корсуна и Дугласа Грехема 7, 8, 12 июня в Киеве, Львове и Харькове: Инновационный менеджмент, продвижение, лицензирование, передача технологий и коммерциализации

alt7 июня в 14:30 в Научном Парке "Киевская политехника" состоится семинар с участием Виктора Корсуна (Vic Korsun, USA) и Дугласа Грэхема (Douglas Graham, USA), которые представят новую платформу для Инновационного менеджмента, продвижения, лицензирования, передачи технологий и коммерциализации

 
Максен MXene, открытый группой ученых из Университета Дрекселя под руководством профессора Юрия Гогоци, - новое имя среди двумерных наноматериалов

Исследователи из Института Наноматериалов Университета Дрекселя изучали максины на протяжении боле половины десятилетия. Слева направо: Алексей Гогоци, директора Центра Материаловедения (Украина), Габриэл Скалл, Бабак Анасори, Мухаммед Альхабиб и профессор Юрий Гогоци.На данный момент синтезированы и изучены более двадцати максенов (MXenes) - двумерных карбидов, нитридов и карбонитридов переходных металлов, и еще ожидается, что десятки их будут синтезированы. Применение высоко электропроводящих максенов является очень перспективным для хранения энергии, экранирования и защиты от электромагнитных помех, электрокатализа, плазмоники и многих других приложений.

 
Вакансия: Постдокторант или научный сотрудник в Цзилиньском университете, г.Чанчунь, Китай, с возможностью стажировки в США.

alt

К вниманию молодых ученых - отличная возможность для начала успешной научной карьеры под руководством известного авторитетного профессора Юрия Гогоци.

- Позиция в одном из лучших университетов Китая с возможностью стажировки в США.

- Работа под руководством наиболее цитируемого украинского ученого, работающего зарубежом, профессора Юрия Гогоци;

- Научная работа в области новых двумерных  наноматериалов для энергетики;

- Цель работы: достижение прорыва в области возобновляемых источников энергии, публикация статей в ведущих международных журналах.

- Начальный срок - 1 год с возможностью продления до трех лет. Оплата в зависмости от квалификации.

 
Доктор Юрий Гогоци стал почетным профессором Цзилиньского университета, Чанчунь, провинция Цзилинь, Китай

профессор Юрий Гогоци и ректор Цзилиньского Университета Ли Юаньюань

20 октября 2016 года в торжественной обстановке прошла официальная церемония назначения доктора Юрия Гогоци почетным профессором Цзилиньского университета, Чанчунь, провинция Цзилинь, Китай.

 
Доклад Алексея Гогоци, директора Центра материаловедения в Цзилиньском Университете, Чанчунь, Китай, 19 октября 2016

Доклад директора MRC Алексея Гогоци в Колледже Физики Цзилиньского Университета, Чанчунь, 19 октября 2016Алексей Гогоци, директор Центра материаловедения, был приглашен профессором Хан Вей в Цзилиньский Университет для обсуждения совместного сотрудничества с научными подразделениями Университета в области разработки, синтеза материалов и технологии изготовления суперконденсаторов.

 
Защитное покрытие из наноматериала максена MXene для отражения и поглощения электромагнитных помех

Максен это тонкий и легкий наноматериал, который обладает уникальной способностью блокировать и поглощать электромагнитное излучение, что делает его идеальным для использования в качестве защитного механизма в электроникеГруппа исследователей из Университета Дрекселя и Корейского института науки и технологий работает над очисткой от таких электромагнитных помех с помощью нанесения на компоненты тонкой защитной пленки наноматериала под названием Максин.

 
Профессор Юрий Гогоци, директор Института Наноматериалов Университета Дрекселя, США, и директор Центра материаловедения Алексей Гогоци посетили Университет Цзилинь в Чанчуне, Китай.

Слева направо: директор Центра материаловедения Алексей Гогоци, проф. Юрий Гогоци, Университет Дрекселя, и проф Gao Yu, проф. Fei Du, и  директор Лаборатории физики и технологий для современных батарей Университета Цзилинь проф.Yingjin Wei, Чанчунь, Китай. Они встретились с китайскими партнерами по научным исследованиям из Лаборатории физики и технологий для современных батарей Университета Цзилинь

 
Профессор Юрий Гогоци был награжден престижной премией 2016 Nano Energy Award, 15 июля 2016 в Пекине.

директор Института Наноматериалов Университета Дрекселя профессор Юрий Гогоци был награжден  престижной премией 2016 Nano Energy Award. директор Института Наноматериалов Университета Дрекселя профессор Юрий Гогоци был награжден  престижной премией 2016 Nano Energy Award. Эту награду профессору Юрию Гогоци вручал главный редактор журнала Elsevier и Nano Energy Zhong Lin Wang Профессор Юрий Гогоци сделал огромный вклад в изучение и понимание механизмов емкостного наколения энергии.

 
Поздравляем профессора Юрия Гогоци с победой в премии 2016 Nano Energy Award!

prof. Yury Gogotsi, Drexel University

Победителем престижной международной научной премии 2016 Nano Energy Award стал профессор Юрий Гогоци, директор Института наноматериалов Университета Дрекселя

 
Юрий Гогоци и Патрис Симон стали лауреатами международной премии RUSNANOPRIZE 2015 за разработку углеродных наноматериалов для суперконденсаторов

Лауреаты премии RUSNANOPRIZE 2015 проф. Юрий Гогоци (Университет Дрекселя, США) и проф. Патрис Симон (Университет Тулузы им. Поля Сабатье, Франция), 28 октября 2015 г. На форуме «Открытые инновации»,  открывшемся 28 октября 2015 г. в Москве, состоялась церемония вручения премии RUSNANOPRIZE за достижения в области нанотехнологий Юрию Гогоци и Патрису Симону

 
Проф. Юрий Гогоци, Университт Дрекселя и проф. Патрис Симон, Университет Тулузы им. Поля Сабатье вошли в шорт-лист номинантов премии в области нанотехнологий RUSNANOPRIZE 2015

altОбъявлен шорт-лист претендентов на Международную премию в области нанотехнологий RUSNANOPRIZE 2015, в числе трех команд - претендентов проф. Юрий Гогоци, Университт Дрекселя (США) и проф. Патрис Симон, Университет Тулузы им. Поля Сабатье (Франция).

 
Поздравляем профессора Юрия Гогоци с избранием в Совет директоров MRS, Materials Research Society !

Профессор ГогоциНа протяжении уже более 20 лет проф. Ю. Гогоци  принимает активное участие в деятельности  MRS.