Nanodiamonds for drug delivery and other biomedical applications

Печать

 4th International Conference Nanobiophysics: Fundamental and Applied Aspects, 1-4 October 2015, Kyiv, Ukraine

 Nanodiamonds for drug delivery and other biomedical applications

O. Gogotsi1, Y. Gogotsi2, V. Mochalin2,  Y. Zozulya1, B. Malinovskiy1, V. Zahorodna1, I. Uvarova3, H. Gogotsi3,

1 Materials Research Centre, 3 Akademika Krzhyzhanovs'koho St, Kyiv 03680, Ukraine, E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA, E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
 3 Frantsevich Institute for Problems of Materials Science of NASU, 3 Akademika Krzhyzhanovs'koho St, Kyiv 03680, Ukraine, E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Abstract

     Carbon nanomaterials hold tremendous potential in addressing the two major issues faced by our society: providing energy and improving healthcare. Nanodiamond powder produced by detonation synthesis is one of the most promising carbon nanomaterials for drug delivery and theranostics [1], [2]. Diamond particles have a ~4-5 nm stable core and a large surface area with tailorable surface chemistry. Nanodiamonds have unique optical, mechanical and thermal properties. These properties have recently started to attract much interest for different biomedical applications [3]. Rich surface chemistry, nontoxicity and good biocompatibility of diamond nanoparticles make them attractive in biomaterial applications [4].
      The development of new methods for obtaining free nanodiamond particles opens up new possibility for targeted drug-delivery systems that overcome cell membranes, various biological markers, systems intended for determination of the concentration of bioactive agents in living organisms, and others applications [5]. For tissue engineering scaffolds, the non-toxic fluorescent nanodiamond introduced into biodegradable polymers provides increased strength, visual monitoring, and enhanced biomineralization [6].
Nanodiamond (ND) particles are increasingly being utilized as diagnostic, imaging, and therapeutic agents in biomedicine [7]. In the area of biomedical imaging and diagnostics, luminescent nanodiamond with NV centers, as well as chemically modified fluorescent nanodiamond, hold tremendous potential to replace toxic semiconductor quantum dots, thus bringing this exciting potential application one step closer to the clinics [8]. Before nanodiamonds could be applied, they have to undergo multistage purification, characterization and surface modification. Various approaches of surface modification and functionalization of nanodiamond allow to enhance and control drug adsorption for prolongation of drug action and chemical binding of the drugs for sustained drug release for their further use as a drug delivery platform. As for drug delivery, this study mainly focuses on adsorption of antibiotics that will be discussed in detail. We demonstrate results of physical−chemical study of the adsorption of doxorubicin, polymyxin B and rifampicin on nanodiamonds.

References:
 [1]. V. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi The Properties and Applications of Nanodiamonds (Review), Nature Nanotechnology, 7 (1), p.11-23 (2012)
[2]. V. Mochalin, A. Pentecost, X.-M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi Adsorption of Drugs on Nanodiamond: Toward Development of a Drug Delivery Platform, Molecular Pharmaceutics, 10 (10), p.3728-3735 (2013)
[3]. O. Shenderova, D. Gruen, ed. Detonation Nanodiamonds: Science and Applications (2nd Edition), CRC Press (2014)
[4]. Q. Zhang, V. Mochalin, I. Neitzel, I. Knoke, J. Han, C. Klug, J. Zhou, P. Lelkes, Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, 32 (1), p. 87-94 (2011)
[5]. A. Schrand, S. Hens, O. Shenderova Nanodiamond particles: properties and perspectives for bioapplications, Critical Reviews in Solid State and Materials Sciences, 34(1–2), p. 18–74 (2009)
[6]. Q. Zhang, V. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J. G. Zhou, P. I. Lelkes, Y. Gogotsi Multifunctional Nanodiamond-PLLA Scaffolds for Bone Tissue Engineering: Enhanced Mechanical Strength and Biomineralization, Biomaterials, 33 (20), p.5067-5075 (2012)
[7]. V. Vaijayanthimala, D. Lee, S. Kim, A. Yen, D. Tsai, H.-C. Chang, O. Shenderova Nanodiamond-mediated drug delivery and imaging: challenges and opportunities, Expert Opinion on Drug Delivery 12 (6), p. 1-15 (2014)
[8]. G. Balasubramanian, A. Lazariev, S. R. Arumugam, et al. Nitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Current Opinion in Chemical Biology 20, p. 69-77 (2014)

Download PDF version of Nanodiamonds for drug delivery and other biomedical applications 

Here you can find Book of Abstract of the Conference NBP 2015